Retiming dynamics of harmonically mode-locked laser solitons in a self-driven optomechanical lattice

IF 23.4 Q1 OPTICS Light-Science & Applications Pub Date : 2025-02-02 DOI:10.1038/s41377-024-01736-3
Xiaocong Wang, Benhai Wang, Wenbin He, Xintong Zhang, Qi Huang, Zhiyuan Huang, Xin Jiang, Meng Pang, Philip. St. J. Russell
{"title":"Retiming dynamics of harmonically mode-locked laser solitons in a self-driven optomechanical lattice","authors":"Xiaocong Wang, Benhai Wang, Wenbin He, Xintong Zhang, Qi Huang, Zhiyuan Huang, Xin Jiang, Meng Pang, Philip. St. J. Russell","doi":"10.1038/s41377-024-01736-3","DOIUrl":null,"url":null,"abstract":"<p>Harmonic mode-locking, realized actively or passively, is an effective technique for increasing the repetition rate of ultrafast lasers. It is critically important to understand how a harmonically mode-locked pulse train responds to external perturbations and noise, so as to make sure that it is stable and resistant to noise. Here, in a series of carefully designed experiments, we elucidate the retiming dynamics of laser pulses generated in a soliton fiber laser harmonically mode-locked at GHz frequencies to the acoustic resonance in a photonic crystal fiber (PCF) core. We characterize the self-driven optomechanical lattice, which is distributed along the PCF and provides the structure that supports harmonic mode-locking, using a homodyne setup. We reveal that, after an abrupt perturbation, each soliton in the lattice undergoes damped oscillatory retiming within its trapping potential, while the retiming is strongly coupled to soliton dissipation. In addition, we show, through statistical analysis of the intra-cavity pulse spacing, how the trapping potentials are effective for suppressing timing jitter. The measurements and the theory developed in this work lay the groundwork for studies of the general stability and noise performance of harmonically mode-locked lasers as well as providing valuable insight into generic multi-pulse phenomena in mode-locked lasers.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"35 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01736-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Harmonic mode-locking, realized actively or passively, is an effective technique for increasing the repetition rate of ultrafast lasers. It is critically important to understand how a harmonically mode-locked pulse train responds to external perturbations and noise, so as to make sure that it is stable and resistant to noise. Here, in a series of carefully designed experiments, we elucidate the retiming dynamics of laser pulses generated in a soliton fiber laser harmonically mode-locked at GHz frequencies to the acoustic resonance in a photonic crystal fiber (PCF) core. We characterize the self-driven optomechanical lattice, which is distributed along the PCF and provides the structure that supports harmonic mode-locking, using a homodyne setup. We reveal that, after an abrupt perturbation, each soliton in the lattice undergoes damped oscillatory retiming within its trapping potential, while the retiming is strongly coupled to soliton dissipation. In addition, we show, through statistical analysis of the intra-cavity pulse spacing, how the trapping potentials are effective for suppressing timing jitter. The measurements and the theory developed in this work lay the groundwork for studies of the general stability and noise performance of harmonically mode-locked lasers as well as providing valuable insight into generic multi-pulse phenomena in mode-locked lasers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自驱动光力学晶格中谐波锁模激光孤子的重定时动力学
谐波锁模是提高超快激光重复率的一种有效技术,可以主动或被动实现。了解谐波锁模脉冲串对外部扰动和噪声的响应是至关重要的,以确保它是稳定的和抗噪声的。在这里,通过一系列精心设计的实验,我们阐明了在GHz频率上谐波锁模的孤子光纤激光器中产生的激光脉冲与光子晶体光纤(PCF)芯中的声共振的再定时动力学。我们描述了自驱动的光力学晶格,它沿着PCF分布,并使用纯差设置提供支持谐波锁模的结构。我们发现,在突然扰动后,晶格中的每个孤子在其捕获势内经历阻尼振荡重定时,而重定时与孤子耗散强耦合。此外,通过对腔内脉冲间隔的统计分析,我们证明了捕获势如何有效地抑制时序抖动。本研究的测量和理论为谐波锁模激光器的一般稳定性和噪声性能的研究奠定了基础,并为锁模激光器中常见的多脉冲现象提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Polarization-independent surface nanostructuring by femtosecond laser irradiation via microsphere in far field and ambient air Anti-interference diffractive deep neural networks for multi-object recognition Flexible, stretchable, on-chip optical tweezers for high-throughput bioparticle manipulation Polarization-sensitive neuromorphic vision sensing enabled by pristine black arsenic-phosphorus Exploring the feedback limits of quantum dot lasers for isolator-free photonic integrated circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1