Microscale insight into the proton concentration during electrolytic reaction via an optical microfiber: potential for microcurrent monitoring by a dielectric probe

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2025-02-07 DOI:10.1038/s41377-025-01770-9
Yunyun Huang, Jiaxuan Liang, Haotian Wu, Pengwei Chen, Aoxiang Xiao, Bai-Ou Guan
{"title":"Microscale insight into the proton concentration during electrolytic reaction via an optical microfiber: potential for microcurrent monitoring by a dielectric probe","authors":"Yunyun Huang, Jiaxuan Liang, Haotian Wu, Pengwei Chen, Aoxiang Xiao, Bai-Ou Guan","doi":"10.1038/s41377-025-01770-9","DOIUrl":null,"url":null,"abstract":"<p>Local microcurrent monitoring is of great significance for biological and battery systems, yet it poses a formidable challenge. The current measurement techniques rely on electromagnetic materials which inevitably introduce interference to the system under examination. To address this issue, a promising approach based on a dielectric fiber-optic sensor is demonstrated. The microfiber is capable of detecting microcurrent through monitoring the localized proton concentration signal with a pH resolution of 0.0052 pH units. By sensing the refractive index variation surrounding the sensor induced by the interaction between local proton concentration changes and oxidizer-treated microfiber surface through the evanescent field, this sensing mechanism effectively avoids the interference of the electromagnetic material on the performance of the tested system. This sensor exhibits a limit of detection for microcurrent of 1 μA. The sensing region is a microfiber with a diameter of 8.8 μm. It can get invaluable information that cannot be obtained through conventional electrochemical methods. Examples include photocurrent attenuation in photogenerated carrier materials during illumination, electrical activation in nerve cells, and fluctuations in the efficiency of electrical energy generation during battery discharge. This approach provides a powerful complement to electrochemical methods for the elucidation of microscale reaction mechanisms. The information provided by the prepared dielectric fiber-optic sensor will shed more light on proton kinetics and electrochemical and electrobiological mechanisms, which may fill an important gap in the current bioelectricity and battery monitoring methods.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"64 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01770-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Local microcurrent monitoring is of great significance for biological and battery systems, yet it poses a formidable challenge. The current measurement techniques rely on electromagnetic materials which inevitably introduce interference to the system under examination. To address this issue, a promising approach based on a dielectric fiber-optic sensor is demonstrated. The microfiber is capable of detecting microcurrent through monitoring the localized proton concentration signal with a pH resolution of 0.0052 pH units. By sensing the refractive index variation surrounding the sensor induced by the interaction between local proton concentration changes and oxidizer-treated microfiber surface through the evanescent field, this sensing mechanism effectively avoids the interference of the electromagnetic material on the performance of the tested system. This sensor exhibits a limit of detection for microcurrent of 1 μA. The sensing region is a microfiber with a diameter of 8.8 μm. It can get invaluable information that cannot be obtained through conventional electrochemical methods. Examples include photocurrent attenuation in photogenerated carrier materials during illumination, electrical activation in nerve cells, and fluctuations in the efficiency of electrical energy generation during battery discharge. This approach provides a powerful complement to electrochemical methods for the elucidation of microscale reaction mechanisms. The information provided by the prepared dielectric fiber-optic sensor will shed more light on proton kinetics and electrochemical and electrobiological mechanisms, which may fill an important gap in the current bioelectricity and battery monitoring methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Real-time holographic camera for obtaining real 3D scene hologram Microscale insight into the proton concentration during electrolytic reaction via an optical microfiber: potential for microcurrent monitoring by a dielectric probe Single-shot super-resolved fringe projection profilometry (SSSR-FPP): 100,000 frames-per-second 3D imaging with deep learning Critical band-to-band-tunnelling based optoelectronic memory Analog parallel processor for broadband multifunctional integrated system based on silicon photonic platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1