{"title":"Chiral Shape Engineering Combined with Bimetallic Nanostructures for High-Performance Plasmonic Sulfide Sensors","authors":"Han Lin, Kuniharu Ijiro, Hideyuki Mitomo","doi":"10.1021/acs.chemmater.4c03150","DOIUrl":null,"url":null,"abstract":"Combining chiral shape engineering with the plasmonic sensor features significantly enhances sensor performance and effectively avoids potential background interference. These advantages suggest that chiral nanoparticles could provide valuable insights into addressing defects or shortcomings in traditional plasmonic sensors. Herein, to address the common drawback of performance degradation due to line width broadening in plasmonic sulfide sensors during sulfidation, we designed a distinctive intrinsically chiral bimetallic core–shell plasmonic nanoparticle. The chiral gold core provided strong chiroptical activities, enriching the spectral features, including bipolar peaks and zero-crossing points, while the silver shell was used for sulfide sensing. Remarkably, this chiral plasmonic sulfide sensor demonstrated exceptional sensitivity and clarity. Specifically, the zero-crossing point in the circular dichroism spectrum serves as an easily recognizable tracking feature, leveraging the trend of line width broadening to enhance sensor responsiveness. Particularly, at a sulfide concentration of only 5 μM, the zero-crossing point shift reached up to 170 nm, with a maximum shift limit of 208 nm, surpassing all previously reported plasmonic sulfide sensors. Finally, the well-defined structure of this chiral-core sensing-shell design offers an alternative fabrication approach for expanding the chiral plasmonic sensing platform, allowing for flexible replacement of the shell material to meet specific sensing requirements.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"12 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c03150","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Combining chiral shape engineering with the plasmonic sensor features significantly enhances sensor performance and effectively avoids potential background interference. These advantages suggest that chiral nanoparticles could provide valuable insights into addressing defects or shortcomings in traditional plasmonic sensors. Herein, to address the common drawback of performance degradation due to line width broadening in plasmonic sulfide sensors during sulfidation, we designed a distinctive intrinsically chiral bimetallic core–shell plasmonic nanoparticle. The chiral gold core provided strong chiroptical activities, enriching the spectral features, including bipolar peaks and zero-crossing points, while the silver shell was used for sulfide sensing. Remarkably, this chiral plasmonic sulfide sensor demonstrated exceptional sensitivity and clarity. Specifically, the zero-crossing point in the circular dichroism spectrum serves as an easily recognizable tracking feature, leveraging the trend of line width broadening to enhance sensor responsiveness. Particularly, at a sulfide concentration of only 5 μM, the zero-crossing point shift reached up to 170 nm, with a maximum shift limit of 208 nm, surpassing all previously reported plasmonic sulfide sensors. Finally, the well-defined structure of this chiral-core sensing-shell design offers an alternative fabrication approach for expanding the chiral plasmonic sensing platform, allowing for flexible replacement of the shell material to meet specific sensing requirements.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.