Helium Incorporation into Scandium Fluoride, a Model Negative Thermal Expansion Material

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2025-02-04 DOI:10.1021/acs.chemmater.4c03329
Shangye Ma, Samuel J. Baxter, Changyong Park, Stella Chariton, Antonio M. dos Santos, Jamie J. Molaison, Angus P. Wilkinson
{"title":"Helium Incorporation into Scandium Fluoride, a Model Negative Thermal Expansion Material","authors":"Shangye Ma, Samuel J. Baxter, Changyong Park, Stella Chariton, Antonio M. dos Santos, Jamie J. Molaison, Angus P. Wilkinson","doi":"10.1021/acs.chemmater.4c03329","DOIUrl":null,"url":null,"abstract":"Scandium trifluoride is a model negative thermal expansion (NTE) material. Its simple structure can be described as an A-site vacant perovskite, and it shows isotropic NTE over a very wide temperature range (up to ∼1100 K), due to transverse vibrational motion of the fluoride. Like many framework NTE materials, it undergoes a phase transition at low pressures, adopting a rhombohedral (<i>R</i>3̅<i>c</i>) structure at &gt;0.7 GPa and 300 K in commonly used nonpenetrating pressure media, such as silicone oil. High pressure X-ray diffraction data and gas uptake/release measurements indicate that, on compression in helium above ∼200 K, helium is inserted into ScF<sub>3</sub> to form the defect perovskite He<sub><i>x</i></sub>ScF<sub>3</sub>. The incorporation of helium stiffens the structure and changes its phase behavior. At room temperature, complete filling of the structure with helium does not occur until &gt;1.5 GPa. On compression, a cubic perovskite structure is maintained until ∼5 GPa. As the pressure was increased to ∼9.5 GPa, a further transition occurred at ∼7 GPa. The first transition at ∼5 GPa is likely to a tetragonal (<i>P</i>4/<i>mbm</i>) perovskite, but the detailed structure of the perovskite phase formed on compression above ∼7 GPa is unclear. Cooling down from 300 to 100 K in helium at ∼0.4 GPa leads to an approximate composition of He<sub>0.1</sub>ScF<sub>3</sub>. High pressure neutron diffraction measurements, in the temperature range 15–150 K show that the incorporation of helium increases the pressure at which the cubic (<i>Pm</i>3̅<i>m</i>) to rhombohedral (<i>R</i>3̅<i>c</i>) putative quantum structural phase transition occurs from close to 0 GPa to ∼0.2 GPa at 0 K.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"26 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c03329","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Scandium trifluoride is a model negative thermal expansion (NTE) material. Its simple structure can be described as an A-site vacant perovskite, and it shows isotropic NTE over a very wide temperature range (up to ∼1100 K), due to transverse vibrational motion of the fluoride. Like many framework NTE materials, it undergoes a phase transition at low pressures, adopting a rhombohedral (Rc) structure at >0.7 GPa and 300 K in commonly used nonpenetrating pressure media, such as silicone oil. High pressure X-ray diffraction data and gas uptake/release measurements indicate that, on compression in helium above ∼200 K, helium is inserted into ScF3 to form the defect perovskite HexScF3. The incorporation of helium stiffens the structure and changes its phase behavior. At room temperature, complete filling of the structure with helium does not occur until >1.5 GPa. On compression, a cubic perovskite structure is maintained until ∼5 GPa. As the pressure was increased to ∼9.5 GPa, a further transition occurred at ∼7 GPa. The first transition at ∼5 GPa is likely to a tetragonal (P4/mbm) perovskite, but the detailed structure of the perovskite phase formed on compression above ∼7 GPa is unclear. Cooling down from 300 to 100 K in helium at ∼0.4 GPa leads to an approximate composition of He0.1ScF3. High pressure neutron diffraction measurements, in the temperature range 15–150 K show that the incorporation of helium increases the pressure at which the cubic (Pmm) to rhombohedral (Rc) putative quantum structural phase transition occurs from close to 0 GPa to ∼0.2 GPa at 0 K.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Insights into the Redox Chemistry and Structural Evolution of a P2-Type Cathode Material in Sodium-Ion Batteries Integrating Experiments and Simulations to Reveal Anisotropic Growth Mechanisms and Interfaces of a One-Dimensional Zeolite Helium Incorporation into Scandium Fluoride, a Model Negative Thermal Expansion Material Lockable Multiple Twisting in Donor–Acceptor Molecules for Emergent Crystalline Structures and Optical Properties Sharp Interface and Highly Efficient Upconversion Luminescence of CaF2@NaYbF4:Er@CaF2 Sandwich-Structured Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1