Yujiao Zhu, Pui Hong Yeung, Tsz Wing Lo, Yao Chai, Yat Lam Wong, Ying Chen, Huaming Yang, Weixing Yu, Anatoly V. Zayats, Fengjia Xie, Xuming Zhang
{"title":"Packed bed optofluidic microreactors with Au decorated TiO2 nanoflowers for visible light photocatalytic water purification","authors":"Yujiao Zhu, Pui Hong Yeung, Tsz Wing Lo, Yao Chai, Yat Lam Wong, Ying Chen, Huaming Yang, Weixing Yu, Anatoly V. Zayats, Fengjia Xie, Xuming Zhang","doi":"10.1038/s41545-024-00431-5","DOIUrl":null,"url":null,"abstract":"<p>Photocatalytic water purification is an environmentally sustainable approach, but limited by low efficiency due to challenges with photocatalysts and mass transfer. Optofluidic microreactors can address these constraints, yet optimizing reactor configurations and photocatalyst designs remains challenging. Here, we present a novel planar packed-bed optofluidic microreactor (PPOM) using titanium dioxide nanoflowers (TNFs) decorated with gold nanoparticles (Au/TNFs) and conduct a pilot study on efficient visible light-driven water purification. Compared to TNFs in slurry-mode, the Au/TNFs achieve 46-fold enhancement in photodegradation efficiency due to the plasmonic effect, further boosted to 2,700-fold enhancement in the PPOM configuration by improving surface area, light harvesting, and mass transfer. The PPOM also shows a 7-fold efficiency increase compared to planar film-mode microreactors. Theoretical analysis elucidates the influences of plasmonic effect and reactor configuration on the enhanced photocatalytic activity, emphasizing the potential of integrated optofluidic systems and plasmonic-semiconductor heterostructures for sustainable water treatment and energy applications.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"34 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-024-00431-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic water purification is an environmentally sustainable approach, but limited by low efficiency due to challenges with photocatalysts and mass transfer. Optofluidic microreactors can address these constraints, yet optimizing reactor configurations and photocatalyst designs remains challenging. Here, we present a novel planar packed-bed optofluidic microreactor (PPOM) using titanium dioxide nanoflowers (TNFs) decorated with gold nanoparticles (Au/TNFs) and conduct a pilot study on efficient visible light-driven water purification. Compared to TNFs in slurry-mode, the Au/TNFs achieve 46-fold enhancement in photodegradation efficiency due to the plasmonic effect, further boosted to 2,700-fold enhancement in the PPOM configuration by improving surface area, light harvesting, and mass transfer. The PPOM also shows a 7-fold efficiency increase compared to planar film-mode microreactors. Theoretical analysis elucidates the influences of plasmonic effect and reactor configuration on the enhanced photocatalytic activity, emphasizing the potential of integrated optofluidic systems and plasmonic-semiconductor heterostructures for sustainable water treatment and energy applications.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.