Metagenomic surveillance reveals different structure and function of microbial community associated with mangrove pneumatophores and their surrounding matrices
Varsha Bohra, Kaze King-Yip Lai, Kit-Ling Lam, Nora Fung-Yee Tam, Steven Jing-liang, Fred Wang-Fat Lee
{"title":"Metagenomic surveillance reveals different structure and function of microbial community associated with mangrove pneumatophores and their surrounding matrices","authors":"Varsha Bohra, Kaze King-Yip Lai, Kit-Ling Lam, Nora Fung-Yee Tam, Steven Jing-liang, Fred Wang-Fat Lee","doi":"10.1016/j.marpolbul.2025.117614","DOIUrl":null,"url":null,"abstract":"Present research employed metagenomics to explore the structural and functional diversity of microorganisms in two matrices of pneumatophore: adhered sediments (PS) and epiphytes (PE) of <ce:italic>Avicennia marina</ce:italic>. These were compared with microorganisms in surrounding environments: tidal water (TW), mudflat sediment (MF) and mangrove sediment (MS). Results revealed that bacteria made up over 95 % of the microbial community across all five matrices, with the dominance of phylum Proteobacteria, because of their metabolic flexibility and ability to survive in harsh mangrove environment. The bacterial community in PS and PE were similar to TW but differed from those in MF and MS, implying their provenance from TW. The high relative abundance of genes involved in nitrate and sulfur reduction pathways in PS and PE indicates pneumatophore bacteria helps in enhancing nitrogen and sulfur availability. This study is the first to explore the functional significance of pneumatophore-adhered prokaryotic communities using metagenomics.","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"34 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marpolbul.2025.117614","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Present research employed metagenomics to explore the structural and functional diversity of microorganisms in two matrices of pneumatophore: adhered sediments (PS) and epiphytes (PE) of Avicennia marina. These were compared with microorganisms in surrounding environments: tidal water (TW), mudflat sediment (MF) and mangrove sediment (MS). Results revealed that bacteria made up over 95 % of the microbial community across all five matrices, with the dominance of phylum Proteobacteria, because of their metabolic flexibility and ability to survive in harsh mangrove environment. The bacterial community in PS and PE were similar to TW but differed from those in MF and MS, implying their provenance from TW. The high relative abundance of genes involved in nitrate and sulfur reduction pathways in PS and PE indicates pneumatophore bacteria helps in enhancing nitrogen and sulfur availability. This study is the first to explore the functional significance of pneumatophore-adhered prokaryotic communities using metagenomics.
期刊介绍:
Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.