Influence of the eutectic interface on the fatigue behaviour of friction stir spot welds of aluminum with copper

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Fatigue Pub Date : 2025-01-27 DOI:10.1016/j.ijfatigue.2025.108834
E. Tognoli , K. Schricker , E. Bassoli , J.P. Bergmann
{"title":"Influence of the eutectic interface on the fatigue behaviour of friction stir spot welds of aluminum with copper","authors":"E. Tognoli ,&nbsp;K. Schricker ,&nbsp;E. Bassoli ,&nbsp;J.P. Bergmann","doi":"10.1016/j.ijfatigue.2025.108834","DOIUrl":null,"url":null,"abstract":"<div><div>The development of hybrid bonds between copper and aluminum is being pursued for reasons of cost, functionality, and weight, particularly in the field of electromobility, to achieve near net-zero emissions. Joining aluminum to copper is a challenge, as interfacial intermetallic compounds have a negative impact on the strength, ductility, and electrical properties of the joint. The development of brittle intermetallic compounds can be limited by targeted temperature control, making solid-phase joining processes particularly suitable. In this article, the fatigue behaviour of friction stir spot welded joints of copper CW004A and aluminum alloy AA1050A with probeless tools is studied. A melt film forms between the metals and the axial force displaces this film laterally, creating an intermediate layer of eutectic and Al<sub>2</sub>Cu in the joint area. The effect of this layer on the fatigue behaviour of the joint was investigated in this study. At high loads, failure occurs by a combination of Modes I and II with crack propagation in as well as around the bonding area, while at low loads only Mode I is observed. Typically, cracks origin at the spot outer diameter in aluminum, propagate at first in the laterally expelled melt and then through the aluminum sheet, causing unbuttoning.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"194 ","pages":"Article 108834"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325000313","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of hybrid bonds between copper and aluminum is being pursued for reasons of cost, functionality, and weight, particularly in the field of electromobility, to achieve near net-zero emissions. Joining aluminum to copper is a challenge, as interfacial intermetallic compounds have a negative impact on the strength, ductility, and electrical properties of the joint. The development of brittle intermetallic compounds can be limited by targeted temperature control, making solid-phase joining processes particularly suitable. In this article, the fatigue behaviour of friction stir spot welded joints of copper CW004A and aluminum alloy AA1050A with probeless tools is studied. A melt film forms between the metals and the axial force displaces this film laterally, creating an intermediate layer of eutectic and Al2Cu in the joint area. The effect of this layer on the fatigue behaviour of the joint was investigated in this study. At high loads, failure occurs by a combination of Modes I and II with crack propagation in as well as around the bonding area, while at low loads only Mode I is observed. Typically, cracks origin at the spot outer diameter in aluminum, propagate at first in the laterally expelled melt and then through the aluminum sheet, causing unbuttoning.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
期刊最新文献
The influence of printing strategies on the fatigue crack growth behaviour of an additively manufactured Ti6Al4V Grade 23 titanium alloy Notch structural stress theory: Part Ⅲ surface roughness effect on fatigue lives A novel physical cycle-jump method for fatigue crack simulation of polycrystalline nickel-based superalloy A data-assisted physics-informed neural network for predicting fatigue life of electronic components under complex shock loads Grain size refinement of hard nitride coating to mitigate fatigue performance degradation in ductile metal substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1