{"title":"Electrochemical and computational studies on the interaction between calf-thymus DNA and skin whitening agent arbutin","authors":"Maryam M.M. Mahdi, Alper Fitoz, Ceren Yıldız, Dilek Eskiköy Bayraktepe, Zehra Yazan","doi":"10.1016/j.bioelechem.2025.108923","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction between double-stranded calf thymus DNA (<em>ctDNA</em>) and the skin whitening agent arbutin (<em>AR</em>) examined by applying electrochemical and computational methods for the first time in literature. A single-use pencil graphite electrode via cyclic (<em>CV</em>) and differential pulse voltammetry (<em>DPV</em>) techniques were applied to determine the kinetic and thermodynamic parameters in the absence and presence of <em>ctDNA</em>. To examine the interaction process, oxidation peak currents and potentials of <em>AR</em> were observed prior to the addition of various <em>ctDNA</em> concentrations. The binding constants (<em>K<sub>AR-DNA</sub></em>) and Gibbs free energy (Δ<em>G°</em>) values for the <em>AR-DNA</em> complex were determined as <em>1.82 × 10</em><sup>4</sup> <em>L/mol</em> and <em>−24.30 kJ/mol</em> at 298 K, respectively. Temperature evaluation of the interaction was examined using thermodynamic parameters (Δ<em>H°: −30.30 kJ/mol</em> and Δ<em>S°: −0.00197 kJ/mol</em>) applying the Van’t Hoff equation. The local interaction sites in the molecule structure were determined by applying Fukui functions and second-order perturbation theory in view of potential hydrogen binding centers. The optimized structure of <em>AR</em> was applied with a <em>DNA</em> structure revealing the binding position for <em>AR-DNA</em> complex. Experimental and computational examinations suggested that <em>AR-DNA</em> binds to <em>ctDNA</em> through a minor groove mode via conventional hydrogen bonds, hydrophobic interactions and van der Waals forces.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108923"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156753942500026X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between double-stranded calf thymus DNA (ctDNA) and the skin whitening agent arbutin (AR) examined by applying electrochemical and computational methods for the first time in literature. A single-use pencil graphite electrode via cyclic (CV) and differential pulse voltammetry (DPV) techniques were applied to determine the kinetic and thermodynamic parameters in the absence and presence of ctDNA. To examine the interaction process, oxidation peak currents and potentials of AR were observed prior to the addition of various ctDNA concentrations. The binding constants (KAR-DNA) and Gibbs free energy (ΔG°) values for the AR-DNA complex were determined as 1.82 × 104L/mol and −24.30 kJ/mol at 298 K, respectively. Temperature evaluation of the interaction was examined using thermodynamic parameters (ΔH°: −30.30 kJ/mol and ΔS°: −0.00197 kJ/mol) applying the Van’t Hoff equation. The local interaction sites in the molecule structure were determined by applying Fukui functions and second-order perturbation theory in view of potential hydrogen binding centers. The optimized structure of AR was applied with a DNA structure revealing the binding position for AR-DNA complex. Experimental and computational examinations suggested that AR-DNA binds to ctDNA through a minor groove mode via conventional hydrogen bonds, hydrophobic interactions and van der Waals forces.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.