Nitrate pollution accelerated the microbial corrosion of Fe0: A simulated corrosion verification for understanding marine corrosion phenomenological model
{"title":"Nitrate pollution accelerated the microbial corrosion of Fe0: A simulated corrosion verification for understanding marine corrosion phenomenological model","authors":"Ding Guo , Jizhou Duan","doi":"10.1016/j.bioelechem.2025.108942","DOIUrl":null,"url":null,"abstract":"<div><div>In the seawater-sediment simulated immersion system, nitrate affected microbial corrosion of steel. The research studied the corrosion processes of Q235 steel influenced by nitrate exposure from aspects such as mineral evolution, environmental microbial cultivation, and interfacial electrochemistry. Nitrate pollution affected the corrosion acceleration (0.11 ± 0.01 mm*y<sup>−1</sup>, pit<sub>max</sub> = 21.11 μm). Severe iron corrosion might not originate from the acidification of the interface microenvironment or the bioactivity of sulfate-reducing bacteria controlled by diffusion of inorganic nitrogen in the rust layer, but rather from the microbial metabolism of nitrate-reducing bacteria. The nitrate-addition had altered the composition of the microbial community attached to the steel surface, with a significant increase in the abundance of <em>Achromobacter</em>. The attached microorganisms regulated the Fe<sup>0</sup> oxidation and the NO<sub>3</sub><sup>−</sup> reduction on the Q235 steel surface to increase the pitting corrosion sensitivity and live bacteria number. The effect of nitrate on microbial corrosion of Fe<sup>0</sup> in aerobic environment showed different understandings from the proposed corrosion phenomenological model.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108942"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000453","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the seawater-sediment simulated immersion system, nitrate affected microbial corrosion of steel. The research studied the corrosion processes of Q235 steel influenced by nitrate exposure from aspects such as mineral evolution, environmental microbial cultivation, and interfacial electrochemistry. Nitrate pollution affected the corrosion acceleration (0.11 ± 0.01 mm*y−1, pitmax = 21.11 μm). Severe iron corrosion might not originate from the acidification of the interface microenvironment or the bioactivity of sulfate-reducing bacteria controlled by diffusion of inorganic nitrogen in the rust layer, but rather from the microbial metabolism of nitrate-reducing bacteria. The nitrate-addition had altered the composition of the microbial community attached to the steel surface, with a significant increase in the abundance of Achromobacter. The attached microorganisms regulated the Fe0 oxidation and the NO3− reduction on the Q235 steel surface to increase the pitting corrosion sensitivity and live bacteria number. The effect of nitrate on microbial corrosion of Fe0 in aerobic environment showed different understandings from the proposed corrosion phenomenological model.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.