FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Biophysics Pub Date : 2025-02-03 DOI:10.1007/s12013-024-01653-7
Jian Jiang, Tianci Shen, Dan Chen, Zihao Dai, Xuelong Wang, Qiang Meng, Zhuo Yang, Di Zhang, Xiaoyi Guo, Jianqiang Xu, Jiangning Gu, Changmiao Wang
{"title":"FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer.","authors":"Jian Jiang, Tianci Shen, Dan Chen, Zihao Dai, Xuelong Wang, Qiang Meng, Zhuo Yang, Di Zhang, Xiaoyi Guo, Jianqiang Xu, Jiangning Gu, Changmiao Wang","doi":"10.1007/s12013-024-01653-7","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor; however, the barrier of chemoresistance has yet to be overcome for longer survival. Aberrant gene expression due to epigenetic modification plays an important role in tumorigenesis and treatment. Super enhancers are epigenetic elements that promote targeted gene transcription and ultimately lead to chemoresistance. This study found that the expression of FOXM1 was higher in PDAC tissues and negatively correlated with prognosis. Through RNA sequencing and chromatin immunoprecipitation-sequencing analyses, FOXM1 was found to be regulated by a BRD4-associated super enhancer, which finally promoted gemcitabine resistance via TGFβ/Smad signaling pathway activation. Both TGFβ/Smad-specific inhibitor LY364947 and the BRD4 inhibitor JQ1 decreased the IC50 value of gemcitabine in vitro. Furthermore, combined gemcitabine and JQ1 therapy could not only enhance the therapeutic effect of gemcitabine but also reverse drug resistance in vivo. In conclusion, the super enhancer-associated gene FOMX1 contributes to gemcitabine resistance and is a promising target in PDAC treatment.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01653-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor; however, the barrier of chemoresistance has yet to be overcome for longer survival. Aberrant gene expression due to epigenetic modification plays an important role in tumorigenesis and treatment. Super enhancers are epigenetic elements that promote targeted gene transcription and ultimately lead to chemoresistance. This study found that the expression of FOXM1 was higher in PDAC tissues and negatively correlated with prognosis. Through RNA sequencing and chromatin immunoprecipitation-sequencing analyses, FOXM1 was found to be regulated by a BRD4-associated super enhancer, which finally promoted gemcitabine resistance via TGFβ/Smad signaling pathway activation. Both TGFβ/Smad-specific inhibitor LY364947 and the BRD4 inhibitor JQ1 decreased the IC50 value of gemcitabine in vitro. Furthermore, combined gemcitabine and JQ1 therapy could not only enhance the therapeutic effect of gemcitabine but also reverse drug resistance in vivo. In conclusion, the super enhancer-associated gene FOMX1 contributes to gemcitabine resistance and is a promising target in PDAC treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
期刊最新文献
Biological and Molecular Efficiency of Paracentrotus lividus Shell in vitro Study: Antioxidant and Angiogenesis Effects Against T47D Breast Cancer Cell Line Via Nrf2/HMOX-1/ and HIF-1α /VEGF Signaling Pathways. C6orf120 Deficiency Inhibits Hepatic Stellate Cell Activation by Upregulating RARβ Signaling. FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer. Numerical Simulation of InP and MXene-Based SPR Sensor for Different Cancerous Cells Detection. Ophiopogonin D Alleviates Sepsis-Induced Acute Lung Injury Through Improving Microvascular Endothelial Barrier Dysfunction via Inhibition of HIF-1α-VEGF Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1