Carlos R Baiz, Katerina Kanevche, Jacek Kozuch, Joachim Heberle
{"title":"Data-driven signal-to-noise enhancement in scattering near-field infrared microscopy.","authors":"Carlos R Baiz, Katerina Kanevche, Jacek Kozuch, Joachim Heberle","doi":"10.1063/5.0247251","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a machine-learning approach to enhance signal-to-noise ratios in scattering-type scanning near-field optical microscopy (s-SNOM). While s-SNOM offers a high spatial resolution, its effectiveness is often hindered by low signal levels, particularly in weakly absorbing samples. To address these challenges, we utilize a data-driven \"patch-based\" machine learning reconstruction method, incorporating modern generative adversarial neural networks (CycleGANs) for denoising s-SNOM images. This method allows for flexible reconstruction of images of arbitrary sizes, a critical capability given the variable nature of scanned sample areas in point-scanning probe-based microscopies. The CycleGAN model is trained on unpaired sets of images captured at both rapid and extended acquisition times, thereby modeling instrument noise while preserving essential topographical and molecular information. The results show significant improvements in image quality, as indicated by higher structural similarity index and peak signal-to-noise ratio values, comparable to those obtained from images captured with four times the integration time. This method not only enhances image quality but also has the potential to reduce the overall data acquisition time, making high-resolution s-SNOM imaging more feasible for a wide range of biological and materials science applications.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0247251","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a machine-learning approach to enhance signal-to-noise ratios in scattering-type scanning near-field optical microscopy (s-SNOM). While s-SNOM offers a high spatial resolution, its effectiveness is often hindered by low signal levels, particularly in weakly absorbing samples. To address these challenges, we utilize a data-driven "patch-based" machine learning reconstruction method, incorporating modern generative adversarial neural networks (CycleGANs) for denoising s-SNOM images. This method allows for flexible reconstruction of images of arbitrary sizes, a critical capability given the variable nature of scanned sample areas in point-scanning probe-based microscopies. The CycleGAN model is trained on unpaired sets of images captured at both rapid and extended acquisition times, thereby modeling instrument noise while preserving essential topographical and molecular information. The results show significant improvements in image quality, as indicated by higher structural similarity index and peak signal-to-noise ratio values, comparable to those obtained from images captured with four times the integration time. This method not only enhances image quality but also has the potential to reduce the overall data acquisition time, making high-resolution s-SNOM imaging more feasible for a wide range of biological and materials science applications.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.