Taihao Quan, Yuan Shao, Trupta Purohit, Yiou Jiang, Zhaoping Qin, Gary J. Fisher, Nathan H. Lents, Joseph J. Baldassare
{"title":"CCN2 functions as a modulator of cell cycle regulation in human dermal fibroblasts","authors":"Taihao Quan, Yuan Shao, Trupta Purohit, Yiou Jiang, Zhaoping Qin, Gary J. Fisher, Nathan H. Lents, Joseph J. Baldassare","doi":"10.1002/ccs3.70003","DOIUrl":null,"url":null,"abstract":"<p>CCN2 is widely regarded as a profibrotic factor involved in fibrotic disorders by regulating extracellular matrix (ECM). We report here that CCN2 functions as a critical cell cycle regulator in primary human dermal fibroblasts (HDFs). siRNA-mediated knockdown of CCN2 halted proliferation of primary HDFs, which was rescued by a siRNA-resistant CCN2 expression vector. Furthermore, CCN2 knockdown caused a significant accumulation of cells in G1/G0 phase and blocked entry into S-phase. Mechanistically, CCN2 knockdown blocked cyclin E and CDK4/cyclin D nuclear translocation, and abrogated CDK2 activity. Markedly, CCN2 translocated to the nucleus and co-localized with cyclin D1 upon cell cycle stimulation. Finally, we show that CCN2, a bona fide YAP/TAZ target gene, partially mediates YAP/TAZ-dependent proliferation of primary HDFs. These data provide evidence of a novel CCN2 function as a cell cycle regulator in primary HDFs proliferation, in addition to its known role in ECM regulation.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CCN2 is widely regarded as a profibrotic factor involved in fibrotic disorders by regulating extracellular matrix (ECM). We report here that CCN2 functions as a critical cell cycle regulator in primary human dermal fibroblasts (HDFs). siRNA-mediated knockdown of CCN2 halted proliferation of primary HDFs, which was rescued by a siRNA-resistant CCN2 expression vector. Furthermore, CCN2 knockdown caused a significant accumulation of cells in G1/G0 phase and blocked entry into S-phase. Mechanistically, CCN2 knockdown blocked cyclin E and CDK4/cyclin D nuclear translocation, and abrogated CDK2 activity. Markedly, CCN2 translocated to the nucleus and co-localized with cyclin D1 upon cell cycle stimulation. Finally, we show that CCN2, a bona fide YAP/TAZ target gene, partially mediates YAP/TAZ-dependent proliferation of primary HDFs. These data provide evidence of a novel CCN2 function as a cell cycle regulator in primary HDFs proliferation, in addition to its known role in ECM regulation.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.