Assessment of Long-Term Safety and Efficacy of Purple Sweet Potato Color (PSPC) and Myo-Inositol (MI) Treatment for Motor Related and Behavioral Phenotypes in a Mouse Model of Classic Galactosemia
Olivia Bellagamba, Aaron j Guo, Sandhya Senthilkumar, Synneva Hagen Lillevik, Davide De Biase, Kent Lai, Bijina Balakrishnan
{"title":"Assessment of Long-Term Safety and Efficacy of Purple Sweet Potato Color (PSPC) and Myo-Inositol (MI) Treatment for Motor Related and Behavioral Phenotypes in a Mouse Model of Classic Galactosemia","authors":"Olivia Bellagamba, Aaron j Guo, Sandhya Senthilkumar, Synneva Hagen Lillevik, Davide De Biase, Kent Lai, Bijina Balakrishnan","doi":"10.1002/jimd.70002","DOIUrl":null,"url":null,"abstract":"<p>Classic galactosemia (CG) is a rare inherited metabolic disease caused by mutations in the <i>GALT</i> gene encoding the enzyme galactose-1 phosphate uridylyltransferase in galactose metabolism. The condition develops as a potentially fatal illness during the newborn period, but its acute clinical manifestations can be alleviated through a galactose restricted diet. Nonetheless, such dietary intervention is inadequate in preventing significant long-term consequences, including neurological impairments, growth restriction, cognitive delays, and, for most females, primary ovarian insufficiency. At present, no effective therapy exists to stop the progression of these complications, highlighting the urgent need for new treatment approaches to be developed. Supplements have been used in the treatment of other inborn errors of metabolism; however, they are not typically included in the clinical therapeutic regimen for CG. Recently, our research team has demonstrated that two generally recognized as safe supplements (purple weet potato color, PSPC and <i>myo</i>-inositol, MI) have been effective in partially restoring functions in the ovaries of our <i>GalT</i>-KO mouse model. However, the toxicological profile of both PSPC and MI has not been determined. In this study, we investigated the acute (30 days) and chronic (180 days) oral toxicities of PSPC and MI both in WT control and <i>GalT</i>-KO mice. Furthermore, our study aims to evaluate the effectiveness of oral feeding of PSPC and MI in correcting motor-related and behavioral phenotypes in <i>GalT</i>-KO mice. The long-term treatment of MI at a lower dose demonstrated promising improvements in motor deficit and anxiety driven hyperactivity in the mutant mice.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Classic galactosemia (CG) is a rare inherited metabolic disease caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase in galactose metabolism. The condition develops as a potentially fatal illness during the newborn period, but its acute clinical manifestations can be alleviated through a galactose restricted diet. Nonetheless, such dietary intervention is inadequate in preventing significant long-term consequences, including neurological impairments, growth restriction, cognitive delays, and, for most females, primary ovarian insufficiency. At present, no effective therapy exists to stop the progression of these complications, highlighting the urgent need for new treatment approaches to be developed. Supplements have been used in the treatment of other inborn errors of metabolism; however, they are not typically included in the clinical therapeutic regimen for CG. Recently, our research team has demonstrated that two generally recognized as safe supplements (purple weet potato color, PSPC and myo-inositol, MI) have been effective in partially restoring functions in the ovaries of our GalT-KO mouse model. However, the toxicological profile of both PSPC and MI has not been determined. In this study, we investigated the acute (30 days) and chronic (180 days) oral toxicities of PSPC and MI both in WT control and GalT-KO mice. Furthermore, our study aims to evaluate the effectiveness of oral feeding of PSPC and MI in correcting motor-related and behavioral phenotypes in GalT-KO mice. The long-term treatment of MI at a lower dose demonstrated promising improvements in motor deficit and anxiety driven hyperactivity in the mutant mice.
期刊介绍:
The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).