An elbow passive exoskeleton with controllable assistance: Design and experimental.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2025-02-01 DOI:10.1063/5.0218295
Xuxu Yang, Jing Zhang, Cheng Shen, Chen Wang, Tao Che, Zilin Liang, Tong Cui
{"title":"An elbow passive exoskeleton with controllable assistance: Design and experimental.","authors":"Xuxu Yang, Jing Zhang, Cheng Shen, Chen Wang, Tao Che, Zilin Liang, Tong Cui","doi":"10.1063/5.0218295","DOIUrl":null,"url":null,"abstract":"<p><p>A passive exoskeleton is a wearable robotic device that is worn on the exterior of the user's body to provide physical support and facilitate movement. Existing elbow passive exoskeletons have limitations in their assistance capabilities and range of applications. In this paper, we propose a controllable elbow passive exoskeleton (CEPE) to address these limitations. The CEPE features a ratchet-based self-energy storage mechanism (RSSM) and a Candan gravity compensation mechanism (CGCM). The CGCM counteracts gravitational forces, while the RSSM stores and releases motion energy. This paper establishes a mathematical model for the RSSM, outlines design specifications for both the RSSM and CEPE, and analyzes the influence of design parameters on the power assistance performance. Three experiments were conducted to validate the feasibility of CEPE, including static strength testing, power assistance without load, and power assistance with load. Results show that, without loading, the CEPE provides compensation effects on elbow joint torque of 68.8%, 93.8%, and 70.7% at shoulder joint angles of 0°, 30°, and 60°, respectively. With a 5 kg loading, adjusting the shoulder joint angle from 30° to 60° results in an increase in the decrease of the average absolute torque directly acting on the elbow joint, from 86% to 91.2%. The adjustable RSSM enables the CEPE to operate in four different modes, expanding its potential applications.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0218295","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

A passive exoskeleton is a wearable robotic device that is worn on the exterior of the user's body to provide physical support and facilitate movement. Existing elbow passive exoskeletons have limitations in their assistance capabilities and range of applications. In this paper, we propose a controllable elbow passive exoskeleton (CEPE) to address these limitations. The CEPE features a ratchet-based self-energy storage mechanism (RSSM) and a Candan gravity compensation mechanism (CGCM). The CGCM counteracts gravitational forces, while the RSSM stores and releases motion energy. This paper establishes a mathematical model for the RSSM, outlines design specifications for both the RSSM and CEPE, and analyzes the influence of design parameters on the power assistance performance. Three experiments were conducted to validate the feasibility of CEPE, including static strength testing, power assistance without load, and power assistance with load. Results show that, without loading, the CEPE provides compensation effects on elbow joint torque of 68.8%, 93.8%, and 70.7% at shoulder joint angles of 0°, 30°, and 60°, respectively. With a 5 kg loading, adjusting the shoulder joint angle from 30° to 60° results in an increase in the decrease of the average absolute torque directly acting on the elbow joint, from 86% to 91.2%. The adjustable RSSM enables the CEPE to operate in four different modes, expanding its potential applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
High resolution, sub-picosecond x-ray spectroscopy of K-shell emitters to characterize plasma emissivity measurement. An elbow passive exoskeleton with controllable assistance: Design and experimental. Demagnetization analysis of an 18 GHz electron cyclotron resonance ion source permanent magnet hexapole. Design and evaluation of a piezoelectric energy harvester using asymmetric clamping to improve output performance. Measuring remanent magnetic moment of test masses by a compound pendulum in a magnetic shielding room.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1