Zeyan Pan , Yuhan Guo , Weihe Rong , Sheng Wang , Kai Cui , Wenfang Cai , Zhihui Shi , Xiaona Hu , Guokun Wang , Kun Guo
{"title":"Single-cell protein production from CO2 and electricity with a recirculating anaerobic-aerobic bioprocess","authors":"Zeyan Pan , Yuhan Guo , Weihe Rong , Sheng Wang , Kai Cui , Wenfang Cai , Zhihui Shi , Xiaona Hu , Guokun Wang , Kun Guo","doi":"10.1016/j.ese.2025.100525","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial electrosynthesis (MES) represents a promising approach for converting CO<sub>2</sub> into organic chemicals. However, its industrial application is hindered by low-value products, such as acetate and methane, and insufficient productivity. To address these limitations, coupling acetate production via MES with microbial upgrading to higher-value compounds offers a viable solution. Here we show an integrated reactor that recirculates a cell-free medium between an MES reactor hosting anaerobic homoacetogens (<em>Acetobacterium</em>) and a continuously stirred tank bioreactor hosting aerobic acetate-utilizing bacteria (<em>Alcaligenes</em>) for efficient single-cell protein (SCP) production from CO₂ and electricity. The reactor achieved a maximum cell dry weight (CDW) of 17.4 g L<sup>−1</sup>, with an average production rate of 1.5 g L<sup>−1</sup> d<sup>−1</sup>. The protein content of the biomass reached 74% of the dry weight. Moreover, the integrated design significantly reduced wastewater generation, mitigated product inhibition, and enhanced SCP production. These results demonstrate the potential of this integrated reactor for the efficient and sustainable production of high-value bioproducts from CO<sub>2</sub> and electricity using acetate as a key intermediate.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100525"},"PeriodicalIF":14.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498425000031","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial electrosynthesis (MES) represents a promising approach for converting CO2 into organic chemicals. However, its industrial application is hindered by low-value products, such as acetate and methane, and insufficient productivity. To address these limitations, coupling acetate production via MES with microbial upgrading to higher-value compounds offers a viable solution. Here we show an integrated reactor that recirculates a cell-free medium between an MES reactor hosting anaerobic homoacetogens (Acetobacterium) and a continuously stirred tank bioreactor hosting aerobic acetate-utilizing bacteria (Alcaligenes) for efficient single-cell protein (SCP) production from CO₂ and electricity. The reactor achieved a maximum cell dry weight (CDW) of 17.4 g L−1, with an average production rate of 1.5 g L−1 d−1. The protein content of the biomass reached 74% of the dry weight. Moreover, the integrated design significantly reduced wastewater generation, mitigated product inhibition, and enhanced SCP production. These results demonstrate the potential of this integrated reactor for the efficient and sustainable production of high-value bioproducts from CO2 and electricity using acetate as a key intermediate.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.