Molecular mechanisms and comparative transcriptomics of diapause in two corn rootworm species (Diabrotica spp.)

IF 2.2 Q1 ENTOMOLOGY Current Research in Insect Science Pub Date : 2025-01-01 DOI:10.1016/j.cris.2024.100104
Melise C. Lecheta , Chad Nielson , B. Wade French , Emily A.W. Nadeau , Nicholas M. Teets
{"title":"Molecular mechanisms and comparative transcriptomics of diapause in two corn rootworm species (Diabrotica spp.)","authors":"Melise C. Lecheta ,&nbsp;Chad Nielson ,&nbsp;B. Wade French ,&nbsp;Emily A.W. Nadeau ,&nbsp;Nicholas M. Teets","doi":"10.1016/j.cris.2024.100104","DOIUrl":null,"url":null,"abstract":"<div><div>Diapause is a programmed developmental arrest that can occur at any developmental stage depending on species, but the mechanisms that underscore embryonic diapause are poorly understood. Here, we identified molecular mechanisms underscoring distinct phases of diapause in the <em>Diabrotica</em> spp. complex. This species complex includes economically significant agricultural pests, notably the western corn rootworm (WCR) and northern corn rootworm (NCR), which cause major losses in maize production. Rootworms undergo an obligate embryonic diapause to synchronize their life cycles with host plants, and we sequenced transcriptomes from both species at five time points (pre-diapause, diapause initiation, diapause maintenance, diapause termination, and post-diapause). Our results indicate that transcriptional regulation is dynamic during diapause. Diapause initiation involves shutdown of the cell cycle by downregulating cyclin-related genes, downregulation of aerobic metabolism, with concurrent upregulation of stress-related genes, especially heat shock proteins, the proteasome, and immune-related genes. During post-diapause development, there is a dramatic activation cellular respiration, which may be controlled by insulin signaling. Comparative transcriptomic analyses between WCR and NCR indicated that while many gene expression changes were conserved across species, overall gene expression profiles were distinct, indicating that many transcriptional changes are species-specific, despite the close phylogenetic relationship and phenotypic similarity between these species. This study sheds light on the suite of mechanisms that allow some organisms to pause the symphony of cellular events that occur during embryonic development and persist for several months as a tiny egg. Further, the mechanisms identified here may contribute to further research and pest management efforts in this economically important pest group.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100104"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Insect Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666515824000349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diapause is a programmed developmental arrest that can occur at any developmental stage depending on species, but the mechanisms that underscore embryonic diapause are poorly understood. Here, we identified molecular mechanisms underscoring distinct phases of diapause in the Diabrotica spp. complex. This species complex includes economically significant agricultural pests, notably the western corn rootworm (WCR) and northern corn rootworm (NCR), which cause major losses in maize production. Rootworms undergo an obligate embryonic diapause to synchronize their life cycles with host plants, and we sequenced transcriptomes from both species at five time points (pre-diapause, diapause initiation, diapause maintenance, diapause termination, and post-diapause). Our results indicate that transcriptional regulation is dynamic during diapause. Diapause initiation involves shutdown of the cell cycle by downregulating cyclin-related genes, downregulation of aerobic metabolism, with concurrent upregulation of stress-related genes, especially heat shock proteins, the proteasome, and immune-related genes. During post-diapause development, there is a dramatic activation cellular respiration, which may be controlled by insulin signaling. Comparative transcriptomic analyses between WCR and NCR indicated that while many gene expression changes were conserved across species, overall gene expression profiles were distinct, indicating that many transcriptional changes are species-specific, despite the close phylogenetic relationship and phenotypic similarity between these species. This study sheds light on the suite of mechanisms that allow some organisms to pause the symphony of cellular events that occur during embryonic development and persist for several months as a tiny egg. Further, the mechanisms identified here may contribute to further research and pest management efforts in this economically important pest group.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Insect Science
Current Research in Insect Science Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
3.20
自引率
0.00%
发文量
22
审稿时长
36 days
期刊最新文献
Consequences of “zombie-making” and generalist fungal pathogens on carpenter ant microbiota Exploring novel pyrethroid resistance mechanisms through RNA-seq in Triatoma dimidiata from Colombia Experimental adaptation to singular pathogen challenge reduces susceptibility to novel pathogens in Drosophila melanogaster Molecular mechanisms and comparative transcriptomics of diapause in two corn rootworm species (Diabrotica spp.) The multifaceted role of brood communication in wasp societies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1