Mesoporous silica nanoparticles as sensitizers: A novel approach to enhancing shear wave elastography in liver stiffness measurement

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Materials Science & Engineering C-Materials for Biological Applications Pub Date : 2025-01-06 DOI:10.1016/j.bioadv.2024.214171
Weijie Jiao , Huihui Zhou , Jun Zhang , Yuan Yuan , Junci Wei , Xue Gong , Yuanyuan Sun , Lin Sang , Ming Yu
{"title":"Mesoporous silica nanoparticles as sensitizers: A novel approach to enhancing shear wave elastography in liver stiffness measurement","authors":"Weijie Jiao ,&nbsp;Huihui Zhou ,&nbsp;Jun Zhang ,&nbsp;Yuan Yuan ,&nbsp;Junci Wei ,&nbsp;Xue Gong ,&nbsp;Yuanyuan Sun ,&nbsp;Lin Sang ,&nbsp;Ming Yu","doi":"10.1016/j.bioadv.2024.214171","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>The objective of this study is to elucidate the sensitizing effect of mesoporous silica nanoparticles (MSNs) on shear wave elastography (SWE) and to investigate the potential application of MSNs as a sensitizer to enhance the sensitivity of SWE in the diagnosis of metabolic-associated steatohepatitis (MASH).</div></div><div><h3>Materials and methods</h3><div>The in vitro gelatin models with varying ratios were assessed using SWE to identify the gelatin ratio that most closely approximates with human liver stiffness. Following the characterization of the dispersion properties of MSNs, in vitro models incorporating MSNs of different particle sizes were developed. The variations in shear wave velocity (SWV) within these models were measured and subjected to statistical analysis using SWE. The biocompatibility of the MSNs was evaluated, and the MSN solution was subsequently administered into a MASH animal model. The sensitizing effect of SWE on rat liver was then analyzed statistically.</div></div><div><h3>Results</h3><div>The in vitro model demonstrated that MSNs with smaller particle sizes (100 nm and 200 nm) facilitated the propagation of SWV, thereby enhancing the sensitivity of SWE (<em>P</em> &lt; 0.05). Additionally, the cell viability and hemolysis ratio of 100 nm MSNs were superior to those of 200 nm MSNs (P &lt; 0.05). In vivo animal model experiments indicated that 100 nm fluorescence-modified MSNs could penetrate the MASH liver and elevate the liver stiffness value as measured by SWE.</div></div><div><h3>Conclusion</h3><div>MSNs have the potential to enhance the sensitivity of SWE in the diagnosis of MASH. This approach offers novel insights for improving the efficacy of SWE in clinical diagnostic and therapeutic applications.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214171"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277295082400414X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The objective of this study is to elucidate the sensitizing effect of mesoporous silica nanoparticles (MSNs) on shear wave elastography (SWE) and to investigate the potential application of MSNs as a sensitizer to enhance the sensitivity of SWE in the diagnosis of metabolic-associated steatohepatitis (MASH).

Materials and methods

The in vitro gelatin models with varying ratios were assessed using SWE to identify the gelatin ratio that most closely approximates with human liver stiffness. Following the characterization of the dispersion properties of MSNs, in vitro models incorporating MSNs of different particle sizes were developed. The variations in shear wave velocity (SWV) within these models were measured and subjected to statistical analysis using SWE. The biocompatibility of the MSNs was evaluated, and the MSN solution was subsequently administered into a MASH animal model. The sensitizing effect of SWE on rat liver was then analyzed statistically.

Results

The in vitro model demonstrated that MSNs with smaller particle sizes (100 nm and 200 nm) facilitated the propagation of SWV, thereby enhancing the sensitivity of SWE (P < 0.05). Additionally, the cell viability and hemolysis ratio of 100 nm MSNs were superior to those of 200 nm MSNs (P < 0.05). In vivo animal model experiments indicated that 100 nm fluorescence-modified MSNs could penetrate the MASH liver and elevate the liver stiffness value as measured by SWE.

Conclusion

MSNs have the potential to enhance the sensitivity of SWE in the diagnosis of MASH. This approach offers novel insights for improving the efficacy of SWE in clinical diagnostic and therapeutic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Gelatin
来源期刊
CiteScore
17.80
自引率
0.00%
发文量
501
审稿时长
27 days
期刊介绍: Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include: • Bioinspired and biomimetic materials for medical applications • Materials of biological origin for medical applications • Materials for "active" medical applications • Self-assembling and self-healing materials for medical applications • "Smart" (i.e., stimulus-response) materials for medical applications • Ceramic, metallic, polymeric, and composite materials for medical applications • Materials for in vivo sensing • Materials for in vivo imaging • Materials for delivery of pharmacologic agents and vaccines • Novel approaches for characterizing and modeling materials for medical applications Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources. Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!
期刊最新文献
Relation between shape-tailored CeO2 nanoparticles morphology and hemocompatibility and antimicrobial effect Bio-inspired, programmable biomacromolecules based nanostructures driven cancer therapy Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics Digital light processing of photo-crosslinkable gelatin to create biomimetic 3D constructs serving small intestinal tissue regeneration Glycosylation-driven interactions of nanoparticles with the extracellular matrix: Implications for inflammation and drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1