SARM1 Inhibition Maintains Axonal Integrity After Rat Sciatic Nerve Transection and Repair.

IF 2.1 2区 医学 Q2 ORTHOPEDICS Journal of Hand Surgery-American Volume Pub Date : 2025-01-29 DOI:10.1016/j.jhsa.2024.12.009
Ryan Sachar, Tony Y Lee, Aaron DiAntonio, Christopher J Dy, Jason Wever, Jeff Milbrandt, David M Brogan
{"title":"SARM1 Inhibition Maintains Axonal Integrity After Rat Sciatic Nerve Transection and Repair.","authors":"Ryan Sachar, Tony Y Lee, Aaron DiAntonio, Christopher J Dy, Jason Wever, Jeff Milbrandt, David M Brogan","doi":"10.1016/j.jhsa.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Sterile alpha and TlR motif containing-1 (SARM1) protein has been demonstrated to play a critical role in the initiation of Wallerian degeneration after nerve injury. The goal of this study was to assess whether blockade of SARM1 activity inhibits Wallerian degeneration following nerve transection, potentially promoting more rapid recovery of axonal function.</p><p><strong>Methods: </strong>An adeno-associated virus plasmid encoded with a dominant-negative SARM1 protein fused with green fluorescent protein to impair SARM1 function, was injected into 24 juvenile rats to create a SARM1 dominant-negative (SARM1-DN) phenotype. Twenty-four control rats were injected with a control plasmid expressing only green fluorescent protein. Three weeks after transfection, the rats underwent unilateral sciatic nerve transection and repair. Walking track analysis and nonsurvival surgeries were performed at 2 days, 2 weeks, or 6 weeks to assess muscle strength and compound nerve action potential. Histomorphologic and electrodiagnostic studies were evaluated with mixed-effect analysis.</p><p><strong>Results: </strong>Histomorphologic analysis showed maintenance of axons in the SARM1-DN animals at 2 weeks, with significantly improved compound nerve action potential amplitude. Muscle testing demonstrated greater gastrocnemius strength in SARM1 DN muscles at 2 days and 2 weeks compared to controls, although this was not maintained at 6 weeks.</p><p><strong>Conclusion: </strong>Inhibition of SARM1 resulted in early increases in number and myelination of axons and action potential after sciatic nerve transection and repair in SARM1-DN rats.</p><p><strong>Clinical relevance: </strong>SARM1 inhibition may offer the potential to delay Wallerian degeneration following nerve transection and enable earlier functional recovery of motor strength. .</p>","PeriodicalId":54815,"journal":{"name":"Journal of Hand Surgery-American Volume","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hand Surgery-American Volume","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jhsa.2024.12.009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Sterile alpha and TlR motif containing-1 (SARM1) protein has been demonstrated to play a critical role in the initiation of Wallerian degeneration after nerve injury. The goal of this study was to assess whether blockade of SARM1 activity inhibits Wallerian degeneration following nerve transection, potentially promoting more rapid recovery of axonal function.

Methods: An adeno-associated virus plasmid encoded with a dominant-negative SARM1 protein fused with green fluorescent protein to impair SARM1 function, was injected into 24 juvenile rats to create a SARM1 dominant-negative (SARM1-DN) phenotype. Twenty-four control rats were injected with a control plasmid expressing only green fluorescent protein. Three weeks after transfection, the rats underwent unilateral sciatic nerve transection and repair. Walking track analysis and nonsurvival surgeries were performed at 2 days, 2 weeks, or 6 weeks to assess muscle strength and compound nerve action potential. Histomorphologic and electrodiagnostic studies were evaluated with mixed-effect analysis.

Results: Histomorphologic analysis showed maintenance of axons in the SARM1-DN animals at 2 weeks, with significantly improved compound nerve action potential amplitude. Muscle testing demonstrated greater gastrocnemius strength in SARM1 DN muscles at 2 days and 2 weeks compared to controls, although this was not maintained at 6 weeks.

Conclusion: Inhibition of SARM1 resulted in early increases in number and myelination of axons and action potential after sciatic nerve transection and repair in SARM1-DN rats.

Clinical relevance: SARM1 inhibition may offer the potential to delay Wallerian degeneration following nerve transection and enable earlier functional recovery of motor strength. .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
10.50%
发文量
402
审稿时长
12 weeks
期刊介绍: The Journal of Hand Surgery publishes original, peer-reviewed articles related to the pathophysiology, diagnosis, and treatment of diseases and conditions of the upper extremity; these include both clinical and basic science studies, along with case reports. Special features include Review Articles (including Current Concepts and The Hand Surgery Landscape), Reviews of Books and Media, and Letters to the Editor.
期刊最新文献
Development of International Quality Measures Targeting Low-Value Care in Hand Surgery. Replication of Coupled Movements of the Wrist: A Cadaveric Study of Total Wrist Arthroplasty. Clinical and Radiographic Outcomes of Distal Radius Fractures Following Dorsal Bridge Fixation to the Second Versus Third Metacarpal. SARM1 Inhibition Maintains Axonal Integrity After Rat Sciatic Nerve Transection and Repair. Distal Radius Fracture in the Setting of Human Immunodeficiency Virus: Management and Adverse Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1