Afterglow quenching in plasma-based dry reforming of methane: a detailed analysis of the post-plasma chemistry via kinetic modelling.

Joachim Slaets, Eduardo Morais, Annemie Bogaerts
{"title":"Afterglow quenching in plasma-based dry reforming of methane: a detailed analysis of the post-plasma chemistry <i>via</i> kinetic modelling.","authors":"Joachim Slaets, Eduardo Morais, Annemie Bogaerts","doi":"10.1039/d4su00676c","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a kinetic model to investigate the post-plasma (afterglow) chemistry of dry reforming of methane (DRM) in warm plasmas with varying CO<sub>2</sub>/CH<sub>4</sub> ratios. We used two methods to study the effects of plasma temperature and afterglow quenching on the CO<sub>2</sub> and CH<sub>4</sub> conversion and product selectivity. First, quenching <i>via</i> conductive cooling is shown to be unimportant for mixtures with 30/70 and 50/50 CO<sub>2</sub>/CH<sub>4</sub> ratios, while it affects mixtures containing excess CO<sub>2</sub> (70/30) by influencing radical recombination towards CO<sub>2</sub>, H<sub>2</sub> and H<sub>2</sub>O, as well as the water gas shift reaction, decreasing the CO<sub>2</sub> conversion throughout the afterglow. This is accompanied by shifts in product distribution, from CO and H<sub>2</sub>O to CO<sub>2</sub> and H<sub>2</sub>, and the magnitude of this effect depends on a combination of plasma temperature and quenching rate. Second and more importantly, quenching <i>via</i> post-plasma mixing of the hot plasma effluent with fresh cold gas yields a significant improvement in conversion according to our model, with 258% and 301% extra conversion for CO<sub>2</sub> and CH<sub>4</sub>, respectively. This is accompanied by small changes in product selectivity, which are the result of interrupted reaction pathways at lower gas temperatures in the afterglow. Effectively, the post-plasma mixing can function as a heat recovery system, significantly lowering the energy cost through the additional conversion ensued. With this approach, our model predicts that energy consumption can be lowered by nearly 80% in comparison to DRM under the same plasma conditions without mixing.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4su00676c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a kinetic model to investigate the post-plasma (afterglow) chemistry of dry reforming of methane (DRM) in warm plasmas with varying CO2/CH4 ratios. We used two methods to study the effects of plasma temperature and afterglow quenching on the CO2 and CH4 conversion and product selectivity. First, quenching via conductive cooling is shown to be unimportant for mixtures with 30/70 and 50/50 CO2/CH4 ratios, while it affects mixtures containing excess CO2 (70/30) by influencing radical recombination towards CO2, H2 and H2O, as well as the water gas shift reaction, decreasing the CO2 conversion throughout the afterglow. This is accompanied by shifts in product distribution, from CO and H2O to CO2 and H2, and the magnitude of this effect depends on a combination of plasma temperature and quenching rate. Second and more importantly, quenching via post-plasma mixing of the hot plasma effluent with fresh cold gas yields a significant improvement in conversion according to our model, with 258% and 301% extra conversion for CO2 and CH4, respectively. This is accompanied by small changes in product selectivity, which are the result of interrupted reaction pathways at lower gas temperatures in the afterglow. Effectively, the post-plasma mixing can function as a heat recovery system, significantly lowering the energy cost through the additional conversion ensued. With this approach, our model predicts that energy consumption can be lowered by nearly 80% in comparison to DRM under the same plasma conditions without mixing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Afterglow quenching in plasma-based dry reforming of methane: a detailed analysis of the post-plasma chemistry via kinetic modelling. Showcasing the technological advancements of carbon dioxide conversion: a pathway to a sustainable future From lead–acid batteries to perovskite solar cells – efficient recycling of Pb-containing materials†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1