Sarah-Naomi James, Carole H Sudre, Josephine Barnes, David M Cash, Yu-Jie Chiou, William Coath, Ashvini Keshavan, Kirsty Lu, Ian Malone, Heidi Murray-Smith, Jennifer M Nicholas, Michele Orini, Thomas Parker, Pamela Almeida-Meza, Nick C Fox, Marcus Richards, Jonathan M Schott
{"title":"The relationship between leisure time physical activity patterns, Alzheimer's disease markers and cognition.","authors":"Sarah-Naomi James, Carole H Sudre, Josephine Barnes, David M Cash, Yu-Jie Chiou, William Coath, Ashvini Keshavan, Kirsty Lu, Ian Malone, Heidi Murray-Smith, Jennifer M Nicholas, Michele Orini, Thomas Parker, Pamela Almeida-Meza, Nick C Fox, Marcus Richards, Jonathan M Schott","doi":"10.1093/braincomms/fcae431","DOIUrl":null,"url":null,"abstract":"<p><p>We assessed the association between leisure time physical activity patterns across 30 years of adulthood with a range of <i>in vivo</i> Alzheimer's disease-related neurodegenerative markers and cognition, and their interplay, at age 70. Participants from the 1946 British birth cohort study prospectively reported leisure time physical activity five times between ages 36 and 69 and were dichotomized into (i) not active (no participation/month) and (ii) active (participated once or more/month) and further derived into: (0) never active (not active); (1) active before 50's only (≤43 years); (2) active from 50's onwards only (≥53 years); (3) always active (active throughout). Participants underwent 18F-florbetapir Aβ and magnetic resonance imaging at age 70. Regression analyses were conducted to assess the direct and the moderating relationship between leisure time physical activity metrics, Alzheimer's disease-related neurodegeneration markers (including Aβ status, hippocampal and whole-brain volume, and cortical thickness in Alzheimer's disease signature regions) and cognition. All models were adjusted for childhood cognition, education and childhood socioeconomic position, and examined by sex. Findings drawn from 468 participants (49% female) demonstrated a direct association between being active before 50 years old (≤43 years) and throughout life (up to age 69 years), with larger hippocampal volume at age 70 (<i>P</i> < 0.05). There was little evidence that leisure time physical activity had direct effects on other brain health measures (all <i>P</i> > 0.05). However, leisure time physical activity patterns modified and attenuated the association between poorer cognitive functioning at age 70 and a range of Alzheimer's disease-related neurodegenerative markers (Aβ status; hippocampal and whole-brain volume; cortical thickness in Alzheimer's disease regions) (all <i>P</i> < 0.05). We found suggestive evidence that women with early markers of Alzheimer's disease-related neurodegeneration were most sensitive to leisure time physical activity patterns: a lifetime of inactivity in women exacerbated the manifestation of early Alzheimer's disease markers (Aβ and cortical thickness-related cognition), yet, if women were active across life or early in life, it mostly buffered these negative relationships. Engagement in leisure time physical activity in the life course is associated with better cognitive functioning at age 70, even in those with early markers of Alzheimer's disease. If causal, this is likely via multiple pathways, potentially through the preservation of hippocampal volume, as well as via cognitive resilience pathways delaying cognitive manifestations of early markers of Alzheimer's disease, particularly in women. Our findings warrant further research to shed light on the mechanisms of physical activity as a potential disease-modifying intervention of brain health and cognitive resilience.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae431"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcae431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We assessed the association between leisure time physical activity patterns across 30 years of adulthood with a range of in vivo Alzheimer's disease-related neurodegenerative markers and cognition, and their interplay, at age 70. Participants from the 1946 British birth cohort study prospectively reported leisure time physical activity five times between ages 36 and 69 and were dichotomized into (i) not active (no participation/month) and (ii) active (participated once or more/month) and further derived into: (0) never active (not active); (1) active before 50's only (≤43 years); (2) active from 50's onwards only (≥53 years); (3) always active (active throughout). Participants underwent 18F-florbetapir Aβ and magnetic resonance imaging at age 70. Regression analyses were conducted to assess the direct and the moderating relationship between leisure time physical activity metrics, Alzheimer's disease-related neurodegeneration markers (including Aβ status, hippocampal and whole-brain volume, and cortical thickness in Alzheimer's disease signature regions) and cognition. All models were adjusted for childhood cognition, education and childhood socioeconomic position, and examined by sex. Findings drawn from 468 participants (49% female) demonstrated a direct association between being active before 50 years old (≤43 years) and throughout life (up to age 69 years), with larger hippocampal volume at age 70 (P < 0.05). There was little evidence that leisure time physical activity had direct effects on other brain health measures (all P > 0.05). However, leisure time physical activity patterns modified and attenuated the association between poorer cognitive functioning at age 70 and a range of Alzheimer's disease-related neurodegenerative markers (Aβ status; hippocampal and whole-brain volume; cortical thickness in Alzheimer's disease regions) (all P < 0.05). We found suggestive evidence that women with early markers of Alzheimer's disease-related neurodegeneration were most sensitive to leisure time physical activity patterns: a lifetime of inactivity in women exacerbated the manifestation of early Alzheimer's disease markers (Aβ and cortical thickness-related cognition), yet, if women were active across life or early in life, it mostly buffered these negative relationships. Engagement in leisure time physical activity in the life course is associated with better cognitive functioning at age 70, even in those with early markers of Alzheimer's disease. If causal, this is likely via multiple pathways, potentially through the preservation of hippocampal volume, as well as via cognitive resilience pathways delaying cognitive manifestations of early markers of Alzheimer's disease, particularly in women. Our findings warrant further research to shed light on the mechanisms of physical activity as a potential disease-modifying intervention of brain health and cognitive resilience.