Yanchun Huang , Weifang Huang , Luming Dou , Longguo Li , Chao Liu , Bo Lai , Naiwen Li
{"title":"Single-atom Ag confined with nitrogen coordination in porous tubular g-C3N4 as fenton-like photocatalyst for solar-powered water purification","authors":"Yanchun Huang , Weifang Huang , Luming Dou , Longguo Li , Chao Liu , Bo Lai , Naiwen Li","doi":"10.1016/j.jclepro.2025.144934","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and sustainable water purification is the key to safe drinking water. Single-atom Fenton-like processes have attracted widespread attention because of high catalytic efficiency and environmental friendliness. Herein, Ag single-atom catalyst (SACs) in porous tubular carbon nitride (SAAg@PTCN) was successfully synthesized by one-step thermal polymerization method using silver tricyanomethanide (AgTCM), urea and melamine, which was based on the molecular structural similarity between AgTCM and g-C<sub>3</sub>N<sub>4</sub>. The addition of single-atom Ag promoted photocarrier separation, inhibited recombination, expanded light absorption range, reduced potential barrier and improved electron transfer ability in visible light and peroxymonosulfate (Vis-PMS) system, which was beneficial to improve the degradation efficiency of carbamazepine (CBZ). The CBZ could be degraded 98.2% in 45 min and degradation rate constant in SAAg@PTCN/Vis-PMS system (0.066 min<sup>−1</sup>) was notably higher compared to PTCN/Vis-PMS (0.0219 min<sup>−1</sup>). Significantly, Ag<sup>+</sup> concentration after photocatalytic degradation remained at 0.07 mg/L and the degradation efficiency could still reach 100% after five reactions, which indicated that SAAg@PTCN/Vis-PMS system had strong stability and recyclability. Furthermore, non-free radicals (<sup>1</sup>O<sub>2</sub> and h<sup>+</sup>) and free radicals (O<sub>2</sub><sup>•−</sup>, HO<sup>•</sup> and SO<sub>4</sub><sup>•−</sup>) were the primary reactive oxygen species (ROS), which was beneficial to adapt to a wide range of pH and degrade a variety of pollutants in actual water bodies. The solar powered Fenton-like water purification device had achieved efficient co-degradation performance for EPs and microcystis aeruginosa, which verified the practical application potential of SAAg@PTCN. SAAg@PTCN held significant promise as a sustainable and viable solution for efficient water purification.</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"493 ","pages":"Article 144934"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652625002847","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and sustainable water purification is the key to safe drinking water. Single-atom Fenton-like processes have attracted widespread attention because of high catalytic efficiency and environmental friendliness. Herein, Ag single-atom catalyst (SACs) in porous tubular carbon nitride (SAAg@PTCN) was successfully synthesized by one-step thermal polymerization method using silver tricyanomethanide (AgTCM), urea and melamine, which was based on the molecular structural similarity between AgTCM and g-C3N4. The addition of single-atom Ag promoted photocarrier separation, inhibited recombination, expanded light absorption range, reduced potential barrier and improved electron transfer ability in visible light and peroxymonosulfate (Vis-PMS) system, which was beneficial to improve the degradation efficiency of carbamazepine (CBZ). The CBZ could be degraded 98.2% in 45 min and degradation rate constant in SAAg@PTCN/Vis-PMS system (0.066 min−1) was notably higher compared to PTCN/Vis-PMS (0.0219 min−1). Significantly, Ag+ concentration after photocatalytic degradation remained at 0.07 mg/L and the degradation efficiency could still reach 100% after five reactions, which indicated that SAAg@PTCN/Vis-PMS system had strong stability and recyclability. Furthermore, non-free radicals (1O2 and h+) and free radicals (O2•−, HO• and SO4•−) were the primary reactive oxygen species (ROS), which was beneficial to adapt to a wide range of pH and degrade a variety of pollutants in actual water bodies. The solar powered Fenton-like water purification device had achieved efficient co-degradation performance for EPs and microcystis aeruginosa, which verified the practical application potential of SAAg@PTCN. SAAg@PTCN held significant promise as a sustainable and viable solution for efficient water purification.
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.