Francisco Barriga, Fernando Izaurieta, Samuel Lepe, Paola Meza, Jethzael Muñoz, Cristian Quinzacara and Omar Valdivia
{"title":"Gravitational Faraday-Cartan effect beyond gravitomagnetism due to dark matter intrinsic spin","authors":"Francisco Barriga, Fernando Izaurieta, Samuel Lepe, Paola Meza, Jethzael Muñoz, Cristian Quinzacara and Omar Valdivia","doi":"10.1088/1475-7516/2025/02/003","DOIUrl":null,"url":null,"abstract":"We show that the spin of dark matter induces a gravitational analog of the electromagnetic Faraday effect, where the polarization of gravitational waves undergoes a rotation as they propagate through a dark matter halo with a non-vanishing axial hypermomentum. An expression for the gravitational rotation angle is provided, which is analogous to the Faraday rotation in optics, and evaluate its significance in astrophysical settings. Although the effect is expected to be small under current observational constraints, we discuss its potential importance in the early universe. Importantly, this effect is distinct from the known gravitational Faraday rotation in gravitomagnetism, where the geometry of general relativity is split into a background and a low-frequency gravitomagnetic perturbation. In that framework, the polarization of an electromagnetic wave (or a high-frequency GW perturbation) rotates relative to the background geometry. In contrast, this gravitational Faraday-Cartan effect arises from a non-vanishing dark matter axial hypermomentum that breaks the parallel transport of GW polarization, without invoking any gravitomagnetic approximation. Notably, it only rotates gravitational wave polarization without affecting the electromagnetic wave one.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"32 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/02/003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the spin of dark matter induces a gravitational analog of the electromagnetic Faraday effect, where the polarization of gravitational waves undergoes a rotation as they propagate through a dark matter halo with a non-vanishing axial hypermomentum. An expression for the gravitational rotation angle is provided, which is analogous to the Faraday rotation in optics, and evaluate its significance in astrophysical settings. Although the effect is expected to be small under current observational constraints, we discuss its potential importance in the early universe. Importantly, this effect is distinct from the known gravitational Faraday rotation in gravitomagnetism, where the geometry of general relativity is split into a background and a low-frequency gravitomagnetic perturbation. In that framework, the polarization of an electromagnetic wave (or a high-frequency GW perturbation) rotates relative to the background geometry. In contrast, this gravitational Faraday-Cartan effect arises from a non-vanishing dark matter axial hypermomentum that breaks the parallel transport of GW polarization, without invoking any gravitomagnetic approximation. Notably, it only rotates gravitational wave polarization without affecting the electromagnetic wave one.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.