Pharmacophore Recombination Design, Synthesis, and Bioactivity of Ester-Substituted Pyrazole Purine Derivatives as Herbicide Safeners

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural and Food Chemistry Pub Date : 2025-02-04 DOI:10.1021/acs.jafc.4c07027
Wen-Qing Yu, Li-Xia Zhao, Ying Bian, Pan-Xiu Zhang, Ling Jia, Dong-Mei Zhao, Ying Fu, Fei Ye
{"title":"Pharmacophore Recombination Design, Synthesis, and Bioactivity of Ester-Substituted Pyrazole Purine Derivatives as Herbicide Safeners","authors":"Wen-Qing Yu, Li-Xia Zhao, Ying Bian, Pan-Xiu Zhang, Ling Jia, Dong-Mei Zhao, Ying Fu, Fei Ye","doi":"10.1021/acs.jafc.4c07027","DOIUrl":null,"url":null,"abstract":"Mesosulfuron-methyl, an acetolactate synthase (ALS) inhibitor primarily applied to wheat and rye, can injure or even kill wheat crops. Herbicide safeners can improve the herbicide resistance of crops without reducing the herbicidal effect on targeted weed species. Herein, we present a series of pyrazole purine derivatives with the primary structure of the natural product cytokinin and commercialized safener mefenpyridyl, designed using the pharmacophore recombination method. The title compounds were synthesized and characterized using infrared spectroscopy, <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. A bioactivity assay proved that most of the target compounds can reduce the wheat phytotoxicity of mesosulfuron-methyl. Measurements of chlorophyll and glutathione contents, along with other enzyme activity assays, confirmed that compounds <b>I-15</b> and <b>I-13</b> exhibit higher safety activities compared with the mefenpyr-diethyl safener. Molecular structure comparisons demonstrated that <b>I-15</b> is more readily absorbed and disseminated through the crop than the commercialized safener mefenpyr-diethyl. Molecular docking models and molecular dynamics simulations elucidated the protective mechanism of safeners; specifically, compound <b>I-15</b> competitively binds to the ALS active site with mesosulfuron-methyl. The current study reveals the potential of pyrazole purine derivatives in the future discovery of novel herbicide safeners.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"25 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c07027","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mesosulfuron-methyl, an acetolactate synthase (ALS) inhibitor primarily applied to wheat and rye, can injure or even kill wheat crops. Herbicide safeners can improve the herbicide resistance of crops without reducing the herbicidal effect on targeted weed species. Herein, we present a series of pyrazole purine derivatives with the primary structure of the natural product cytokinin and commercialized safener mefenpyridyl, designed using the pharmacophore recombination method. The title compounds were synthesized and characterized using infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. A bioactivity assay proved that most of the target compounds can reduce the wheat phytotoxicity of mesosulfuron-methyl. Measurements of chlorophyll and glutathione contents, along with other enzyme activity assays, confirmed that compounds I-15 and I-13 exhibit higher safety activities compared with the mefenpyr-diethyl safener. Molecular structure comparisons demonstrated that I-15 is more readily absorbed and disseminated through the crop than the commercialized safener mefenpyr-diethyl. Molecular docking models and molecular dynamics simulations elucidated the protective mechanism of safeners; specifically, compound I-15 competitively binds to the ALS active site with mesosulfuron-methyl. The current study reveals the potential of pyrazole purine derivatives in the future discovery of novel herbicide safeners.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
Astaxanthin Prevents Glucocorticoid-Induced Femoral Head Osteonecrosis by Targeting Ferroptosis through the JAK2/STAT3 Signaling Pathway Enzymatic Mechanism of a β-Glucosidase from Lactiplantibacillus plantarum Dy-1 with Potential Applications in the Release of Bound Phenolics in Fermentation Barley Machine Learning-Guided Selection of Cyclodextrins for Enhanced Biosynthesis and Capture of Volatile Terpenes Pharmacophore Recombination Design, Synthesis, and Bioactivity of Ester-Substituted Pyrazole Purine Derivatives as Herbicide Safeners Correction to “Novel Peptide Derived from Gadus morhua Stimulates Osteoblastic Differentiation and Mineralization through Wnt/β-Catenin and BMP Signaling Pathways”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1