Spatial and seasonal variability of excess dinitrogen gas in the Baltic Sea

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Frontiers in Marine Science Pub Date : 2025-02-03 DOI:10.3389/fmars.2025.1455803
Pratha Sivasamy, Magdalena Diak, Aleksandra Winogradow, Hermann W. Bange, Marta Borecka, Przemysław Makuch, Katarzyna Koziorowska-Makuch, Karol Kuliński, Anna Mackiewicz, Beata Szymczycha
{"title":"Spatial and seasonal variability of excess dinitrogen gas in the Baltic Sea","authors":"Pratha Sivasamy, Magdalena Diak, Aleksandra Winogradow, Hermann W. Bange, Marta Borecka, Przemysław Makuch, Katarzyna Koziorowska-Makuch, Karol Kuliński, Anna Mackiewicz, Beata Szymczycha","doi":"10.3389/fmars.2025.1455803","DOIUrl":null,"url":null,"abstract":"To determine the excess of dissolved dinitrogen gas (ΔN<jats:sub>2</jats:sub> &amp;gt; 0 indicates the loss of bioavailable dissolved nitrogen) in the water column of the Baltic Proper, we measured N<jats:sub>2</jats:sub>/Ar ratios below the halocline at 19 stations during different seasons between 2017 and 2021. ΔN<jats:sub>2</jats:sub> concentrations below the halocline ranged from 1.0 to 32.6 µmol L<jats:sup>-1</jats:sup> for all seasons and sites. A significant spatial difference in ΔN<jats:sub>2</jats:sub> (p = 0.0001) was observed, with the highest values found in the Gotland Deep. The seasonal changes in ΔN<jats:sub>2</jats:sub> were statistically significant (p = 0.005) with the highest concentrations observed in winter. To our knowledge, this is the first study showing the variability of ΔN<jats:sub>2</jats:sub> on a large scale in the Baltic Proper. Our findings suggest that the cumulative loss of bioavailable nitrogen via denitrification and anammox is an important mechanism in the Baltic Sea nitrogen cycle. The accumulated signal of N<jats:sub>2</jats:sub> production is, however, not uniform across the Baltic Proper, exhibiting significant seasonal and spatial variabilities. This calls for future, investigations on a broad spatial scale and a seasonal resolution which focus on denitrification and anammox rates in the water column, by utilizing a consistent methodological approach. It is essential to ensure an accurate representation of the nitrogen loss, which in turn is important for managing eutrophication and maintaining a good environmental status in the Baltic Sea.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"55 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1455803","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To determine the excess of dissolved dinitrogen gas (ΔN2 &gt; 0 indicates the loss of bioavailable dissolved nitrogen) in the water column of the Baltic Proper, we measured N2/Ar ratios below the halocline at 19 stations during different seasons between 2017 and 2021. ΔN2 concentrations below the halocline ranged from 1.0 to 32.6 µmol L-1 for all seasons and sites. A significant spatial difference in ΔN2 (p = 0.0001) was observed, with the highest values found in the Gotland Deep. The seasonal changes in ΔN2 were statistically significant (p = 0.005) with the highest concentrations observed in winter. To our knowledge, this is the first study showing the variability of ΔN2 on a large scale in the Baltic Proper. Our findings suggest that the cumulative loss of bioavailable nitrogen via denitrification and anammox is an important mechanism in the Baltic Sea nitrogen cycle. The accumulated signal of N2 production is, however, not uniform across the Baltic Proper, exhibiting significant seasonal and spatial variabilities. This calls for future, investigations on a broad spatial scale and a seasonal resolution which focus on denitrification and anammox rates in the water column, by utilizing a consistent methodological approach. It is essential to ensure an accurate representation of the nitrogen loss, which in turn is important for managing eutrophication and maintaining a good environmental status in the Baltic Sea.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
期刊最新文献
Probiotic properties of Bacillus licheniformis HN318 and comparison of the effects of its bacterial cells and cultures on growth, immunity and disease resistance of hybrid grouper (Epinephelus polyphekadion♂ × Epinephelus fuscoguttatus♀) Hypoxia lowers cell carbon and nitrogen content and accelerates sinking of a marine diatom Thalassiosira pseudonana Trophic niche differentiation and foraging plasticity of long-finned pilot whales (Globicephala melas edwardii) in Tasmanian waters: insights from isotopic analysis Seaweed (Porphyra) cultivation enhances production of autochthonous refractory dissolved organic matter in coastal ecosystems Marine Prosperity Areas: a framework for aligning ecological restoration and human well-being using area-based protections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1