Zhiyuan Yang, Yujing Huang, Hui Li, Jin Zhang* and Minghui Xiang*,
{"title":"Sodium Dodecylbenzenesulfonate Promotes Fe@Fe2O3 Electron Transfer and Induces Free-Radical Conversion to Enhance Tetrabromobisphenol A Degradation","authors":"Zhiyuan Yang, Yujing Huang, Hui Li, Jin Zhang* and Minghui Xiang*, ","doi":"10.1021/acsestengg.4c0042310.1021/acsestengg.4c00423","DOIUrl":null,"url":null,"abstract":"<p >The solubility of hydrophobic pollutants in the aqueous phase affects the degradation efficiency of the pollutants, and cosolvents are usually used to enhance the solubility of hydrophobic pollutants; however, the effect of cosolvents on the pollutant degradation process is not clear. This study constructed a sodium dodecylbenzenesulfonate (SDBS)/Fe@Fe<sub>2</sub>O<sub>3</sub>/PMS system for the efficient removal of tetrabromobisphenol A (TBBPA). SDBS increases the adsorption of oxygen species on the surface of Fe@Fe<sub>2</sub>O<sub>3</sub>, disrupts the dense oxide layer, and promotes the release of iron ions from the core. Kinetic results indicate that the degradation rate constant of TBBPA increases by 87.5 times in the presence of SDBS, and the system is minimally affected by environmental factors, making it broadly applicable. SDBS enhances the dissolved oxygen in the system, promotes the conversion of hydroxyl radicals (<sup>•</sup>OH) into superoxide radical (O<sub>2</sub><sup>•–</sup>) and singlet oxygen (<sup>1</sup>O<sub>2</sub>), and facilitates the transformation of TBBPA into TBBPA radical cations through electron transfer, which then undergoes debromination, hydroxylation, and demethylation to form small molecular degradation products. The dual role of SDBS enables the reutilization of aged ZVI, making it a promising technology for pollutant remediation.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 1","pages":"12–21 12–21"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The solubility of hydrophobic pollutants in the aqueous phase affects the degradation efficiency of the pollutants, and cosolvents are usually used to enhance the solubility of hydrophobic pollutants; however, the effect of cosolvents on the pollutant degradation process is not clear. This study constructed a sodium dodecylbenzenesulfonate (SDBS)/Fe@Fe2O3/PMS system for the efficient removal of tetrabromobisphenol A (TBBPA). SDBS increases the adsorption of oxygen species on the surface of Fe@Fe2O3, disrupts the dense oxide layer, and promotes the release of iron ions from the core. Kinetic results indicate that the degradation rate constant of TBBPA increases by 87.5 times in the presence of SDBS, and the system is minimally affected by environmental factors, making it broadly applicable. SDBS enhances the dissolved oxygen in the system, promotes the conversion of hydroxyl radicals (•OH) into superoxide radical (O2•–) and singlet oxygen (1O2), and facilitates the transformation of TBBPA into TBBPA radical cations through electron transfer, which then undergoes debromination, hydroxylation, and demethylation to form small molecular degradation products. The dual role of SDBS enables the reutilization of aged ZVI, making it a promising technology for pollutant remediation.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.