Mechanism of Dissolved Organic Matter Constructing Zerovalent Iron Interfacial Mass-Transfer Channel Combined with Shewanella oneidensis MR-1 To Remove Cr(VI)
Minghui Xiang, Long Chen, Xinlei Ren, Zhiyuan Yang, Shiting Zhu, Ziying Zhang, Mengyu Su, Jin Zhang* and Hui Li*,
{"title":"Mechanism of Dissolved Organic Matter Constructing Zerovalent Iron Interfacial Mass-Transfer Channel Combined with Shewanella oneidensis MR-1 To Remove Cr(VI)","authors":"Minghui Xiang, Long Chen, Xinlei Ren, Zhiyuan Yang, Shiting Zhu, Ziying Zhang, Mengyu Su, Jin Zhang* and Hui Li*, ","doi":"10.1021/acsestengg.4c0050610.1021/acsestengg.4c00506","DOIUrl":null,"url":null,"abstract":"<p >Nanoscale zerovalent iron (nZVI) is a promising remediation agent for the removal of heavy-metal wastewater. However, nZVI tends to agglomerate and be oxidatively deactivated during the reaction, which limits its application. To address the problem, this study develops a novel modification method to regulate the reaction interface of nZVI by introducing fulvic acid (FA), a naturally occurring environmental component, to the synthesis of nZVI. FA disrupts the circumferential-stress equilibrium of nZVI, enhances the Kirkendall effect, and establishes mass-transfer channels, facilitating the outward transfer of reducible Fe(II) and electrons and the inward transport of surface-adsorbed Cr(VI). The Cr(VI) removal is further enhanced by coupling FA-nZVI with <i>Shewanella oneidensis</i> MR-1, which reduces Fe(III) hydroxides to Fe(II) at the FA-nZVI interface, thereby preventing accumulation of the passivation layer that blocks the mass-transfer channels. The synergistic action of mass-transfer channels with MR-1 enhances the Cr(VI) removal rate by 4.7 times, ensuring a Cr(VI) removal rate of more than 60% under extreme conditions. By exploring the new functions of FA as an organic carbon component, this study provides a fresh perspective on carbon utilization in ecosystems. Leveraging environmental factors for the microstructural modulation of nZVI is an efficient and environmentally friendly approach for remediation of heavy-metal pollution.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 1","pages":"215–225 215–225"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoscale zerovalent iron (nZVI) is a promising remediation agent for the removal of heavy-metal wastewater. However, nZVI tends to agglomerate and be oxidatively deactivated during the reaction, which limits its application. To address the problem, this study develops a novel modification method to regulate the reaction interface of nZVI by introducing fulvic acid (FA), a naturally occurring environmental component, to the synthesis of nZVI. FA disrupts the circumferential-stress equilibrium of nZVI, enhances the Kirkendall effect, and establishes mass-transfer channels, facilitating the outward transfer of reducible Fe(II) and electrons and the inward transport of surface-adsorbed Cr(VI). The Cr(VI) removal is further enhanced by coupling FA-nZVI with Shewanella oneidensis MR-1, which reduces Fe(III) hydroxides to Fe(II) at the FA-nZVI interface, thereby preventing accumulation of the passivation layer that blocks the mass-transfer channels. The synergistic action of mass-transfer channels with MR-1 enhances the Cr(VI) removal rate by 4.7 times, ensuring a Cr(VI) removal rate of more than 60% under extreme conditions. By exploring the new functions of FA as an organic carbon component, this study provides a fresh perspective on carbon utilization in ecosystems. Leveraging environmental factors for the microstructural modulation of nZVI is an efficient and environmentally friendly approach for remediation of heavy-metal pollution.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.