Advanced Nitrogen and Pathogenic Indicator Removal from Digested Livestock Wastewater Using a Partial Nitritation-Anammox Coupled with Partial Denitrification (PN-APD) Process without an External Carbon Source

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL ACS ES&T engineering Pub Date : 2024-11-25 DOI:10.1021/acsestengg.4c0046110.1021/acsestengg.4c00461
Jiaojiao Xu, Wenjing Bai, Rui Tang, Shoujun Yuan, Wei Wang, Guangxue Wu, Xinmin Zhan and Zhen-Hu Hu*, 
{"title":"Advanced Nitrogen and Pathogenic Indicator Removal from Digested Livestock Wastewater Using a Partial Nitritation-Anammox Coupled with Partial Denitrification (PN-APD) Process without an External Carbon Source","authors":"Jiaojiao Xu,&nbsp;Wenjing Bai,&nbsp;Rui Tang,&nbsp;Shoujun Yuan,&nbsp;Wei Wang,&nbsp;Guangxue Wu,&nbsp;Xinmin Zhan and Zhen-Hu Hu*,&nbsp;","doi":"10.1021/acsestengg.4c0046110.1021/acsestengg.4c00461","DOIUrl":null,"url":null,"abstract":"<p >Digested livestock wastewater contains high concentrations of NH<sub>4</sub><sup>+</sup>–N and residual pathogens, and the Anammox process is a cost-effective process for treating wastewater with high NH<sub>4</sub><sup>+</sup>–N concentrations. However, advanced nitrogen and pathogen removal from high-strength wastewater by Anammox-based processes, without the addition of an external carbon source, is still a challenge. In this study, a partial nitritation-Anammox coupled with partial denitrification (PN-APD) process was constructed using a step-feed mode to treat digested livestock wastewater. The PN effluent served as the first feeding. Digested livestock wastewater served as the second feeding, providing a carbon source for the APD process. The PN-APD process achieved a nitrogen removal efficiency (NRE) of 97.0 ± 1.3%, with total inorganic nitrogen concentrations of 14.8 ± 4.2 mg N/L in the effluent. The suitable biodegradable COD/NO<sub><i>x</i></sub><sup>–</sup>–N ratio of the APD process after the second feeding is key to achieving advanced nitrogen removal, and the suitable ratio ranges between 0.6 and 1.2. The second feeding had no significant influence on Anammox bacteria abundance, with <i>Candidatus Kuenenia</i> being the dominant species. The PN-APD process also removed total coliforms and <i>enterococci</i> by 3.3 ± 0.3 and 3.0 ± 0.3 log, respectively, meeting wastewater discharge standards without further disinfection. This study provides a novel approach for the cost-effective simultaneous advanced removal of nitrogen and pathogens from high-strength digested livestock wastewater.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 1","pages":"115–125 115–125"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Digested livestock wastewater contains high concentrations of NH4+–N and residual pathogens, and the Anammox process is a cost-effective process for treating wastewater with high NH4+–N concentrations. However, advanced nitrogen and pathogen removal from high-strength wastewater by Anammox-based processes, without the addition of an external carbon source, is still a challenge. In this study, a partial nitritation-Anammox coupled with partial denitrification (PN-APD) process was constructed using a step-feed mode to treat digested livestock wastewater. The PN effluent served as the first feeding. Digested livestock wastewater served as the second feeding, providing a carbon source for the APD process. The PN-APD process achieved a nitrogen removal efficiency (NRE) of 97.0 ± 1.3%, with total inorganic nitrogen concentrations of 14.8 ± 4.2 mg N/L in the effluent. The suitable biodegradable COD/NOx–N ratio of the APD process after the second feeding is key to achieving advanced nitrogen removal, and the suitable ratio ranges between 0.6 and 1.2. The second feeding had no significant influence on Anammox bacteria abundance, with Candidatus Kuenenia being the dominant species. The PN-APD process also removed total coliforms and enterococci by 3.3 ± 0.3 and 3.0 ± 0.3 log, respectively, meeting wastewater discharge standards without further disinfection. This study provides a novel approach for the cost-effective simultaneous advanced removal of nitrogen and pathogens from high-strength digested livestock wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Broad Influence of Quorum Sensing in Environmental Biotechnology: From Mechanisms to Applications Innovative Catalysis Approaches for Methane Utilization Cooking Oil Fumes: A Comprehensive Review of Emission Characteristics and Catalytic Oxidation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1