{"title":"Impact of non-stoichiometry on lattice thermal conduction at SrTiO3 grain boundaries","authors":"Susumu Fujii , Hiroki Isobe , Wataru Sekimoto , Masato Yoshiya","doi":"10.1016/j.scriptamat.2024.116524","DOIUrl":null,"url":null,"abstract":"<div><div>SrTiO<sub>3</sub> is a typical cubic perovskite and serves as a candidate for thermoelectric materials. To improve the performance, it is necessary to reduce its inherently high lattice thermal conductivity by introducing lattice defects such as grain boundaries. However, the atomic structures and compositions of grain boundaries that effectively suppress thermal conduction in SrTiO<sub>3</sub> have not been elucidated. Here, we have systematically calculated the thermal conductivity of 88 SrTiO<sub>3</sub> symmetric tilt grain boundaries, including stoichiometric, TiO<sub>2</sub>-rich, and SrO-rich ones, using molecular dynamics simulations. The result shows that the excess volume of grain boundary is crucial in determining thermal conductivity, as is the case with ionic MgO. Further analysis also reveals that SrO-rich grain boundaries exhibit lower thermal conductivity than TiO<sub>2</sub>-rich ones due to their higher excess volume and weaker Sr-O bonds. Grain boundary non-stoichiometry is an important factor to control lattice thermal conduction in SrTiO<sub>3</sub>.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"258 ","pages":"Article 116524"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224005578","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SrTiO3 is a typical cubic perovskite and serves as a candidate for thermoelectric materials. To improve the performance, it is necessary to reduce its inherently high lattice thermal conductivity by introducing lattice defects such as grain boundaries. However, the atomic structures and compositions of grain boundaries that effectively suppress thermal conduction in SrTiO3 have not been elucidated. Here, we have systematically calculated the thermal conductivity of 88 SrTiO3 symmetric tilt grain boundaries, including stoichiometric, TiO2-rich, and SrO-rich ones, using molecular dynamics simulations. The result shows that the excess volume of grain boundary is crucial in determining thermal conductivity, as is the case with ionic MgO. Further analysis also reveals that SrO-rich grain boundaries exhibit lower thermal conductivity than TiO2-rich ones due to their higher excess volume and weaker Sr-O bonds. Grain boundary non-stoichiometry is an important factor to control lattice thermal conduction in SrTiO3.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.