Marine gravity gradient model calculation based on wavelet numerical integration and CUDA parallel

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2025-02-01 DOI:10.1016/j.cageo.2025.105852
Jingyu Bu , Zhourun Ye , Xinghui Liang , Lintao Liu , Jinzhao Liu , Tianshuo Fu , Chunju Zhang , Yongchao Zhu
{"title":"Marine gravity gradient model calculation based on wavelet numerical integration and CUDA parallel","authors":"Jingyu Bu ,&nbsp;Zhourun Ye ,&nbsp;Xinghui Liang ,&nbsp;Lintao Liu ,&nbsp;Jinzhao Liu ,&nbsp;Tianshuo Fu ,&nbsp;Chunju Zhang ,&nbsp;Yongchao Zhu","doi":"10.1016/j.cageo.2025.105852","DOIUrl":null,"url":null,"abstract":"<div><div>Compared to traditional gravity observations, the disturbing gravity gradient captures more high-frequency information from the Earth's gravity field. Due to the difficulty in directly obtaining gravity gradient measurements, we can calculate the gravity gradient by the Stokes integral methodology. However, this computational process faces two main issues: 1) Obtaining an analytical expression from the integral of the original function is difficult, necessitating the use of numerical integration methods; and 2) Large volumes of data can lead to reduced computational speed. In our study, Chebyshev wavelet numerical integration is employed to improve the integration accuracy in calculating the disturbing gravity gradient. We also provide the derivation process for nodes and weights based on the Chebyshev wavelet integral. Concurrently, the Compute Unified Device Architecture (CUDA) enables parallel computing on the Graphics Processing Unit (GPU) to improve computational speed. We detail the application of these techniques and translate theoretical concepts into a practical computational program. Experiments conducted on marine area data illustrate that integrating Chebyshev wavelet numerical integration with CUDA parallel computing not only ensures precise calculations but also significantly boosts computational efficiency.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105852"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300425000020","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to traditional gravity observations, the disturbing gravity gradient captures more high-frequency information from the Earth's gravity field. Due to the difficulty in directly obtaining gravity gradient measurements, we can calculate the gravity gradient by the Stokes integral methodology. However, this computational process faces two main issues: 1) Obtaining an analytical expression from the integral of the original function is difficult, necessitating the use of numerical integration methods; and 2) Large volumes of data can lead to reduced computational speed. In our study, Chebyshev wavelet numerical integration is employed to improve the integration accuracy in calculating the disturbing gravity gradient. We also provide the derivation process for nodes and weights based on the Chebyshev wavelet integral. Concurrently, the Compute Unified Device Architecture (CUDA) enables parallel computing on the Graphics Processing Unit (GPU) to improve computational speed. We detail the application of these techniques and translate theoretical concepts into a practical computational program. Experiments conducted on marine area data illustrate that integrating Chebyshev wavelet numerical integration with CUDA parallel computing not only ensures precise calculations but also significantly boosts computational efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Editorial Board Marine gravity gradient model calculation based on wavelet numerical integration and CUDA parallel SAGEA: A toolbox for comprehensive error assessment of GRACE and GRACE-FO based mass changes Dual-scattering elastic least-squares reverse time migration Time reversal imaging and transfer learning for spatial and temporal seismic source location
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1