Jingyu Bu , Zhourun Ye , Xinghui Liang , Lintao Liu , Jinzhao Liu , Tianshuo Fu , Chunju Zhang , Yongchao Zhu
{"title":"Marine gravity gradient model calculation based on wavelet numerical integration and CUDA parallel","authors":"Jingyu Bu , Zhourun Ye , Xinghui Liang , Lintao Liu , Jinzhao Liu , Tianshuo Fu , Chunju Zhang , Yongchao Zhu","doi":"10.1016/j.cageo.2025.105852","DOIUrl":null,"url":null,"abstract":"<div><div>Compared to traditional gravity observations, the disturbing gravity gradient captures more high-frequency information from the Earth's gravity field. Due to the difficulty in directly obtaining gravity gradient measurements, we can calculate the gravity gradient by the Stokes integral methodology. However, this computational process faces two main issues: 1) Obtaining an analytical expression from the integral of the original function is difficult, necessitating the use of numerical integration methods; and 2) Large volumes of data can lead to reduced computational speed. In our study, Chebyshev wavelet numerical integration is employed to improve the integration accuracy in calculating the disturbing gravity gradient. We also provide the derivation process for nodes and weights based on the Chebyshev wavelet integral. Concurrently, the Compute Unified Device Architecture (CUDA) enables parallel computing on the Graphics Processing Unit (GPU) to improve computational speed. We detail the application of these techniques and translate theoretical concepts into a practical computational program. Experiments conducted on marine area data illustrate that integrating Chebyshev wavelet numerical integration with CUDA parallel computing not only ensures precise calculations but also significantly boosts computational efficiency.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105852"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300425000020","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to traditional gravity observations, the disturbing gravity gradient captures more high-frequency information from the Earth's gravity field. Due to the difficulty in directly obtaining gravity gradient measurements, we can calculate the gravity gradient by the Stokes integral methodology. However, this computational process faces two main issues: 1) Obtaining an analytical expression from the integral of the original function is difficult, necessitating the use of numerical integration methods; and 2) Large volumes of data can lead to reduced computational speed. In our study, Chebyshev wavelet numerical integration is employed to improve the integration accuracy in calculating the disturbing gravity gradient. We also provide the derivation process for nodes and weights based on the Chebyshev wavelet integral. Concurrently, the Compute Unified Device Architecture (CUDA) enables parallel computing on the Graphics Processing Unit (GPU) to improve computational speed. We detail the application of these techniques and translate theoretical concepts into a practical computational program. Experiments conducted on marine area data illustrate that integrating Chebyshev wavelet numerical integration with CUDA parallel computing not only ensures precise calculations but also significantly boosts computational efficiency.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.