Capacitive bio–electrocatalyst Mxene@CoMo–ZIF sulfide heterostructure for boosted biofilm electroactivity to enhance renewable energy conversion

IF 9 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2025-02-01 DOI:10.1016/j.renene.2025.122545
Liuqingying Yang , Qing Wen , Ye Chen , Cunguo Lin , Haiping Gao , Zhenghui Qiu , Xu Pan
{"title":"Capacitive bio–electrocatalyst Mxene@CoMo–ZIF sulfide heterostructure for boosted biofilm electroactivity to enhance renewable energy conversion","authors":"Liuqingying Yang ,&nbsp;Qing Wen ,&nbsp;Ye Chen ,&nbsp;Cunguo Lin ,&nbsp;Haiping Gao ,&nbsp;Zhenghui Qiu ,&nbsp;Xu Pan","doi":"10.1016/j.renene.2025.122545","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial Fuel Cells (MFC), as a technology that utilizes microbial metabolic activity to convert organic matter into electrical energy, has the dual advantage of efficient use of organic matter and renewable energy potential. However, the underdeveloped extracellular electron transfer (EET) between biofilm and anode and its weaker colonization are the main factors limiting the power enhancement and energy conversion in microbial fuel cells (MFCs). Therefore, interfacial properties of catalysts loaded on electrodes are the key to rise these restrictions. In this work, a capacitive bio–electrocatalyst has been successfully prepared through ion exchange and in–situ etching methods to anchored Co<sub>9</sub>S<sub>8</sub>–MoS<sub>2</sub>–CoMo<sub>2</sub>S<sub>4</sub> (CMCS) on few–layered Mxene (MX). MX applied as substrate could effectively inhibit the stacking of CMCS particles and increase reactive sites, EET efficiency and redox reaction rates. Hence, the as–prepared powders were coated on carbon felt utilized as bio–electrocatalyst in MFCs. The MFC with MX@CMCS/CF achieved significant faster start–up time and maximum power density of 6.01 W m<sup>−3</sup>, higher than that of CMCS (5.34 W m<sup>−3</sup>), MX@CoMo–ZIF (5.11 W m<sup>−3</sup>) and CoMo–ZIF (2.74 W m<sup>−3</sup>). Biofilm community analysis on anode surface indicated that MX@CMC specifically selected the electrogenic bacteria, <em>Desulfuromonas</em>, denoting a more effective electricity production process. The high performance could be attributed to internal resistance reduction of MX@CMCS and promotion of flavin–related protein expression. This study validated the prospective potential of MX and sulfide heterostructure as capacitive bio–electrocatalyst materials for MFCs on power generation, energy regeneration and microbial community structure.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"243 ","pages":"Article 122545"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125002071","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial Fuel Cells (MFC), as a technology that utilizes microbial metabolic activity to convert organic matter into electrical energy, has the dual advantage of efficient use of organic matter and renewable energy potential. However, the underdeveloped extracellular electron transfer (EET) between biofilm and anode and its weaker colonization are the main factors limiting the power enhancement and energy conversion in microbial fuel cells (MFCs). Therefore, interfacial properties of catalysts loaded on electrodes are the key to rise these restrictions. In this work, a capacitive bio–electrocatalyst has been successfully prepared through ion exchange and in–situ etching methods to anchored Co9S8–MoS2–CoMo2S4 (CMCS) on few–layered Mxene (MX). MX applied as substrate could effectively inhibit the stacking of CMCS particles and increase reactive sites, EET efficiency and redox reaction rates. Hence, the as–prepared powders were coated on carbon felt utilized as bio–electrocatalyst in MFCs. The MFC with MX@CMCS/CF achieved significant faster start–up time and maximum power density of 6.01 W m−3, higher than that of CMCS (5.34 W m−3), MX@CoMo–ZIF (5.11 W m−3) and CoMo–ZIF (2.74 W m−3). Biofilm community analysis on anode surface indicated that MX@CMC specifically selected the electrogenic bacteria, Desulfuromonas, denoting a more effective electricity production process. The high performance could be attributed to internal resistance reduction of MX@CMCS and promotion of flavin–related protein expression. This study validated the prospective potential of MX and sulfide heterostructure as capacitive bio–electrocatalyst materials for MFCs on power generation, energy regeneration and microbial community structure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Editorial Board Editorial Board Capacitive bio–electrocatalyst Mxene@CoMo–ZIF sulfide heterostructure for boosted biofilm electroactivity to enhance renewable energy conversion Fabrication of the composite Pd-Ag-Ni membrane by the electroless plating technique for H2 purification Dynamic operation of two-stage CO2 methanation reactor: Start-up by H2 combustion and load change by independent control of heat-carrier flow rate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1