Simulation analysis of flow field optimization for powder bed surface integrity and spatter particle removal

IF 2.5 3区 工程技术 Q2 MECHANICS European Journal of Mechanics B-fluids Pub Date : 2025-01-27 DOI:10.1016/j.euromechflu.2025.01.011
Qingpeng Chen , Tan Cheng , Jiachen Yu , Feixiang Tang , Wei Wang , Guoqing Zhang , Fang Dong , Sheng Liu
{"title":"Simulation analysis of flow field optimization for powder bed surface integrity and spatter particle removal","authors":"Qingpeng Chen ,&nbsp;Tan Cheng ,&nbsp;Jiachen Yu ,&nbsp;Feixiang Tang ,&nbsp;Wei Wang ,&nbsp;Guoqing Zhang ,&nbsp;Fang Dong ,&nbsp;Sheng Liu","doi":"10.1016/j.euromechflu.2025.01.011","DOIUrl":null,"url":null,"abstract":"<div><div>Spatter particles are a major cause of part defects during laser powder bed fusion (LPBF). Filling the working chamber with an inert gas prevents oxidation of the part and simultaneously removes spatter particles. The flow of inert gas in the working chamber influences the spatter-particle trajectory. This study develops a new wind-duct circulation system design based on inert-gas flow characteristics. The inert gas flow characteristics in the chamber were investigated using a coupled computational fluid dynamics and discrete phase model. The Coanda effect influence on the wind field uniformity and motion trajectories of spatter particles in different regions of the LPBF chamber was analyzed. A Bernoulli-effect three-wind duct structure was designed to attenuate the Coanda effect, and the effects of nine sets of wind speed combinations were investigated. The results demonstrate that the newly designed three-wind duct structure effectively reduces the Coanda effect of the flow field inside the working chamber. Wind speed requirements in each functional area are ensured and the removal efficiency of spatter particles is enhanced (79–96 %). This solution addresses a critical issue found in existing commercial LPBF equipment, providing a reliable reference for the subsequent optimization and design of duct circulation systems.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"111 ","pages":"Pages 266-282"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625000111","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatter particles are a major cause of part defects during laser powder bed fusion (LPBF). Filling the working chamber with an inert gas prevents oxidation of the part and simultaneously removes spatter particles. The flow of inert gas in the working chamber influences the spatter-particle trajectory. This study develops a new wind-duct circulation system design based on inert-gas flow characteristics. The inert gas flow characteristics in the chamber were investigated using a coupled computational fluid dynamics and discrete phase model. The Coanda effect influence on the wind field uniformity and motion trajectories of spatter particles in different regions of the LPBF chamber was analyzed. A Bernoulli-effect three-wind duct structure was designed to attenuate the Coanda effect, and the effects of nine sets of wind speed combinations were investigated. The results demonstrate that the newly designed three-wind duct structure effectively reduces the Coanda effect of the flow field inside the working chamber. Wind speed requirements in each functional area are ensured and the removal efficiency of spatter particles is enhanced (79–96 %). This solution addresses a critical issue found in existing commercial LPBF equipment, providing a reliable reference for the subsequent optimization and design of duct circulation systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
期刊最新文献
Simulation analysis of flow field optimization for powder bed surface integrity and spatter particle removal Updating our perspective on the bi-directional equations of dissipative, finite-amplitude acoustics theory: From Blackstock (1963) to Diaz–Solovchuk–Sheu (2018) A two-experiment approach to hydraulic jump scaling Effect of imposed shear stress on the stability of surfactant-laden liquid film flow over a rod Joule heating and entropy generation on AC electroosmotic flow of Jeffrey fluid in a slowly varying micro-channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1