Hung-Jie Tang , Hao-Cheng Yao , Muk Chen Ong , Ray-Yeng Yang
{"title":"Experimental study of a barge-type floating offshore wind turbine under a sequential mooring line failure","authors":"Hung-Jie Tang , Hao-Cheng Yao , Muk Chen Ong , Ray-Yeng Yang","doi":"10.1016/j.oceaneng.2024.119999","DOIUrl":null,"url":null,"abstract":"<div><div>Navigational safety is a crucial concern for floating offshore wind turbines (FOWTs) in the Taiwan Strait due to potential conflicts between wind farms and existing navigational channels. Understanding the influence of mooring line failures, particularly sequential failures, is essential to address this issue. Despite the abundance of numerical simulations addressing this issue, experimental data on mooring line failures in FOWTs remains scarce. This study aims to provide comprehensive experimental data to support the validation of numerical models. We introduce a novel experimental procedure to examine the effects of sequential mooring line failures on mooring loads and platform motions of FOWTs under diverse wave conditions. A barge-type FOWT, equipped with an NREL 5 MW wind turbine and moored with eight catenary lines at a 1/64 scale ratio, is used for this investigation. The study analyzes the influences of wave height and wave period on the FOWT under sequential mooring failures. Both statistical and spectral analyses are conducted to examine mooring loads and platform motions. The results provide valuable insights into mooring design, platform stability, and drift distance, which are crucial for mitigating the impact of sequential mooring failures and for analyzing space utilization and navigational safety in future floating wind farms.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"317 ","pages":"Article 119999"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801824033377","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Navigational safety is a crucial concern for floating offshore wind turbines (FOWTs) in the Taiwan Strait due to potential conflicts between wind farms and existing navigational channels. Understanding the influence of mooring line failures, particularly sequential failures, is essential to address this issue. Despite the abundance of numerical simulations addressing this issue, experimental data on mooring line failures in FOWTs remains scarce. This study aims to provide comprehensive experimental data to support the validation of numerical models. We introduce a novel experimental procedure to examine the effects of sequential mooring line failures on mooring loads and platform motions of FOWTs under diverse wave conditions. A barge-type FOWT, equipped with an NREL 5 MW wind turbine and moored with eight catenary lines at a 1/64 scale ratio, is used for this investigation. The study analyzes the influences of wave height and wave period on the FOWT under sequential mooring failures. Both statistical and spectral analyses are conducted to examine mooring loads and platform motions. The results provide valuable insights into mooring design, platform stability, and drift distance, which are crucial for mitigating the impact of sequential mooring failures and for analyzing space utilization and navigational safety in future floating wind farms.
期刊介绍:
Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.