Shanmin Fang , Jia Yang , Chris B. Zou , Erik S. Krueger , Tyson E. Ochsner , Quan Zhang
{"title":"Wildfire danger under changing climates in the southern Great Plains throughout the 21st century","authors":"Shanmin Fang , Jia Yang , Chris B. Zou , Erik S. Krueger , Tyson E. Ochsner , Quan Zhang","doi":"10.1016/j.ecolind.2024.112994","DOIUrl":null,"url":null,"abstract":"<div><div>The southern Great Plains (SGP) has recently experienced wildfires with unprecedented severity and frequency, which significantly threatened human life and property and altered terrestrial ecosystem functions. While it is expected that future climate change will affect wildfire danger levels by altering fire weather and fuel conditions, there remains a significant gap in understanding how these changes will manifest in the SGP. Therefore, our objectives were to (1) simulate the spatial and temporal dynamics of the Burning Index (BI), a widely used fire danger index in the National Fire Danger Rating System (NFDRS), and high fire danger days based on CMIP5 climate simulations, comparing the 1986–2005 historical period and 2006–2099 under two climate change scenarios (RCP4.5 and RCP8.5), and (2) identify important weather variables driving projected BI changes. We found that the BI would increase at 0.1 × 10 ft per decade under RCP4.5 and 0.4 × 10 ft per decade under RCP8.5. By the end of the 21st century, the southwestern SGP is projected to become a hotspot for increased wildfire danger, its annual high fire danger days are projected to increase by over 25 days (50 %) under the RCP8.5 and more than 15 days (30 %) under the RCP4.5 compared to 1986–2005. The BI is projected to increase in all months except April, with the highest increases occurring during the summer. The primary climate factor contributing to future BI increases is a decline in relative humidity. Interestingly, our simulations suggest a potential decrease in BI for April, likely due to earlier vegetation green-up prompted by rising temperature. Overall, our study outlines future patterns of fire danger in the SGP. These findings are essential for developing long-term preparedness strategies to mitigate wildfire risks and adapt to the new wildfire regimes under changing climate conditions.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"170 ","pages":"Article 112994"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24014511","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The southern Great Plains (SGP) has recently experienced wildfires with unprecedented severity and frequency, which significantly threatened human life and property and altered terrestrial ecosystem functions. While it is expected that future climate change will affect wildfire danger levels by altering fire weather and fuel conditions, there remains a significant gap in understanding how these changes will manifest in the SGP. Therefore, our objectives were to (1) simulate the spatial and temporal dynamics of the Burning Index (BI), a widely used fire danger index in the National Fire Danger Rating System (NFDRS), and high fire danger days based on CMIP5 climate simulations, comparing the 1986–2005 historical period and 2006–2099 under two climate change scenarios (RCP4.5 and RCP8.5), and (2) identify important weather variables driving projected BI changes. We found that the BI would increase at 0.1 × 10 ft per decade under RCP4.5 and 0.4 × 10 ft per decade under RCP8.5. By the end of the 21st century, the southwestern SGP is projected to become a hotspot for increased wildfire danger, its annual high fire danger days are projected to increase by over 25 days (50 %) under the RCP8.5 and more than 15 days (30 %) under the RCP4.5 compared to 1986–2005. The BI is projected to increase in all months except April, with the highest increases occurring during the summer. The primary climate factor contributing to future BI increases is a decline in relative humidity. Interestingly, our simulations suggest a potential decrease in BI for April, likely due to earlier vegetation green-up prompted by rising temperature. Overall, our study outlines future patterns of fire danger in the SGP. These findings are essential for developing long-term preparedness strategies to mitigate wildfire risks and adapt to the new wildfire regimes under changing climate conditions.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.