Water-alternating-gas injections for optimized mineral carbon storage in basalt

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS International Journal of Greenhouse Gas Control Pub Date : 2025-02-01 DOI:10.1016/j.ijggc.2024.104283
Claire J. Nelson , David S. Goldberg , Mark D. White
{"title":"Water-alternating-gas injections for optimized mineral carbon storage in basalt","authors":"Claire J. Nelson ,&nbsp;David S. Goldberg ,&nbsp;Mark D. White","doi":"10.1016/j.ijggc.2024.104283","DOIUrl":null,"url":null,"abstract":"<div><div>Mineral carbon storage in basalt has been proven as an effective means of durable and verifiable geologic carbon sequestration. This study investigates a novel technology aimed at optimizing subsurface mineralization: water-alternating-gas (WAG), or cycled injections of free-phase CO<sub>2</sub> (e.g., supercritical) and water. Incorporating injection of supercritical CO<sub>2</sub> (scCO<sub>2</sub>) into basalt can minimize water demand, increase per-well injection capacity, and expand the feasible range of basalt carbon storage. Cycling water between injection of scCO<sub>2</sub> can accelerate geochemical reactions and shorten mineralization timeframes. We model aqueous-phase, scCO<sub>2</sub>-only, and WAG injections into subsea and onshore basalt sites using the STOMP-CO<strong><sub>2</sub></strong> simulator. We first simulate WAG injection into mid-ocean ridge basalt at the Juan de Fuca plate in the Northeast Pacific Ocean to investigate injection parameters and reservoir characteristics that accelerate mineralization during WAG injections. Results indicate that WAG injections can be optimized to mineralize 100 % of a 1 Mt CO<sub>2</sub> injection within 40 years. Optimized WAG injections can double mineralization compared to traditional scCO<sub>2</sub>-only using half as much water as an aqueous-phase approach. We then compare the efficiency of WAG injections by simulating scenarios at two additional sites: offshore basalt in the Louisville Seamount, a subocean volcano in the Southwest Pacific, and continental flood basalt along the Columbia River in Washington State. We observe faster mineralization at the Louisville seamount than the Juan de Fuca site, likely due to variations in injection-zone mineralogy. At the Columbia River site, WAG scenarios improve mineralization the most relative to the scCO<sub>2</sub>-only injection and increase feasible per-well injection rates relative to aqueous-phase approaches. Our results indicate that WAG has the potential to optimize carbon mineralization in basalt and substantially advance the scalability of this technology.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"141 ","pages":"Article 104283"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624002263","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Mineral carbon storage in basalt has been proven as an effective means of durable and verifiable geologic carbon sequestration. This study investigates a novel technology aimed at optimizing subsurface mineralization: water-alternating-gas (WAG), or cycled injections of free-phase CO2 (e.g., supercritical) and water. Incorporating injection of supercritical CO2 (scCO2) into basalt can minimize water demand, increase per-well injection capacity, and expand the feasible range of basalt carbon storage. Cycling water between injection of scCO2 can accelerate geochemical reactions and shorten mineralization timeframes. We model aqueous-phase, scCO2-only, and WAG injections into subsea and onshore basalt sites using the STOMP-CO2 simulator. We first simulate WAG injection into mid-ocean ridge basalt at the Juan de Fuca plate in the Northeast Pacific Ocean to investigate injection parameters and reservoir characteristics that accelerate mineralization during WAG injections. Results indicate that WAG injections can be optimized to mineralize 100 % of a 1 Mt CO2 injection within 40 years. Optimized WAG injections can double mineralization compared to traditional scCO2-only using half as much water as an aqueous-phase approach. We then compare the efficiency of WAG injections by simulating scenarios at two additional sites: offshore basalt in the Louisville Seamount, a subocean volcano in the Southwest Pacific, and continental flood basalt along the Columbia River in Washington State. We observe faster mineralization at the Louisville seamount than the Juan de Fuca site, likely due to variations in injection-zone mineralogy. At the Columbia River site, WAG scenarios improve mineralization the most relative to the scCO2-only injection and increase feasible per-well injection rates relative to aqueous-phase approaches. Our results indicate that WAG has the potential to optimize carbon mineralization in basalt and substantially advance the scalability of this technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水-气交替注入优化玄武岩矿物碳储量
玄武岩矿物碳封存已被证明是一种持久的、可验证的地质固碳手段。本研究探讨了一种旨在优化地下矿化的新技术:水-气交替(WAG),或循环注入自由相二氧化碳(如超临界)和水。在玄武岩中注入超临界二氧化碳(scCO2)可以减少需水量,提高单井注入能力,扩大玄武岩碳储量的可行范围。注scCO2之间循环水可以加速地球化学反应,缩短成矿时间。我们使用STOMP-CO2模拟器模拟水下和陆上玄武岩场地的水相、纯scco2和WAG注入。我们首先模拟了东北太平洋Juan de Fuca板块洋中脊玄武岩的WAG注入,以研究WAG注入过程中加速成矿的注入参数和储层特征。结果表明,WAG注入可以在40年内将注入的100万吨二氧化碳矿化100%。与传统的scco2相比,优化的WAG注入可以实现双重矿化,只需水相方法的一半。然后,我们通过模拟另外两个地点的情况来比较WAG注入的效率:路易斯维尔海山的海上玄武岩,西南太平洋的海底火山,以及华盛顿州哥伦比亚河沿岸的大陆洪水玄武岩。我们观察到Louisville海山的矿化速度比Juan de Fuca地点快,可能是由于注入带矿物学的变化。在哥伦比亚河油田,相对于只注入scco2, WAG方案能最大程度地提高矿化程度,相对于水相方法,WAG方案能提高每口井的可行注入速率。我们的研究结果表明,WAG具有优化玄武岩碳矿化的潜力,并大大提高了该技术的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
期刊最新文献
Multi-operator biogenic CO2 hub linked with electricity and heat markets Maximizing the CO2 storage capacity in the depleted oil reservoirs: A case study of a mature oil field in Cuu Long Basin, Vietnam Cyclic CO2 injection in shale reservoirs: A multiscale non-equilibrium evaluation of recovery and storage Operational study of a 200,000 tonne/yr partial oxy-fuel combustion CO2 capture project for cement production Organic-inorganic carbon cycling: Implications for CO2 mineralization of brucite-bearing mine tailings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1