Lattice oxygen activity regulation by alkaline earth metals in iron oxides for biomass chemical looping gasification

Guangyao Yang , Wenjie Xu , Jingbo Jia , Changfu You , Haiming Wang
{"title":"Lattice oxygen activity regulation by alkaline earth metals in iron oxides for biomass chemical looping gasification","authors":"Guangyao Yang ,&nbsp;Wenjie Xu ,&nbsp;Jingbo Jia ,&nbsp;Changfu You ,&nbsp;Haiming Wang","doi":"10.1016/j.ccst.2024.100353","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass chemical looping gasification (BCLG) represents a highly promising approach for syngas production. A critical factor in BCLG is the selection of suitable oxygen carriers (OCs) that exhibit both high carbon conversion (η<sub>C</sub>) and CO selectivity (S<sub>CO</sub>). In this study, iron-based OCs were modified with various alkaline earth metals (AEMs, i.e. Ca, Sr, and Ba) to modulate lattice oxygen activity. The effects of oxygen-to-carbon ratio (O/C), temperature, and cyclic operation on BCLG performance were investigated in a fixed-bed reactor. Among the AEM-modified OCs, Ca1Fe2 (spinel), Sr1Fe1 (perovskite), and Ba1Fe2 (spinel), showed superior performance compared to their Ca, Sr, and Ba-Fe counterparts, respectively. At 900 °C and O/C = 2, the pristine Fe<sub>2</sub>O<sub>3</sub> exhibited a η<sub>C</sub> of 82 % and S<sub>CO</sub> of 53 %. The η<sub>C</sub> for Sr1Fe1 and Ba1Fe2 reached &gt;90 % at 900 °C, with S<sub>CO</sub> increased to &gt;70 %, resulting in a significantly higher syngas yield (H<sub>2</sub>+CO) of &gt;800 mL/g-biomass (vs. 560 for Fe<sub>2</sub>O<sub>3</sub>). In contrast, the addition of Ca showed a much less pronounced effect. In the cyclic test at 900 °C, Ba1Fe2 showed the poorest stability due to a severe sintering. Sr1Fe1 presented the best stability with a syngas yield of 722 mL/g after 10 cycles. The decrease in the activity of Sr1Fe1 was mainly due to the phase separation of SrFeO<sub>3-x</sub> after multiple cycles. Thermodynamically, Sr1Fe1 is favorable for the production of CO instead of CO<sub>2</sub>, leading to its intrinsic high selectivity. As demonstrated by <sup>18</sup>O-isotopic exchange and H<sub>2</sub>-TPR, the activity of surface lattice oxygen and the diffusivity of bulk lattice oxygen was boosted by Sr addition, which caused the high η<sub>C</sub> and S<sub>CO</sub> of Sr1Fe1 at the same time. Thus, even at O/C=5, S<sub>CO</sub> for Sr1Fe1 reached 64 % with η<sub>C</sub> up to 99 %, comparing to the S<sub>CO</sub>=31 % and η<sub>C</sub>=91 % for Fe<sub>2</sub>O<sub>3</sub>.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100353"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass chemical looping gasification (BCLG) represents a highly promising approach for syngas production. A critical factor in BCLG is the selection of suitable oxygen carriers (OCs) that exhibit both high carbon conversion (ηC) and CO selectivity (SCO). In this study, iron-based OCs were modified with various alkaline earth metals (AEMs, i.e. Ca, Sr, and Ba) to modulate lattice oxygen activity. The effects of oxygen-to-carbon ratio (O/C), temperature, and cyclic operation on BCLG performance were investigated in a fixed-bed reactor. Among the AEM-modified OCs, Ca1Fe2 (spinel), Sr1Fe1 (perovskite), and Ba1Fe2 (spinel), showed superior performance compared to their Ca, Sr, and Ba-Fe counterparts, respectively. At 900 °C and O/C = 2, the pristine Fe2O3 exhibited a ηC of 82 % and SCO of 53 %. The ηC for Sr1Fe1 and Ba1Fe2 reached >90 % at 900 °C, with SCO increased to >70 %, resulting in a significantly higher syngas yield (H2+CO) of >800 mL/g-biomass (vs. 560 for Fe2O3). In contrast, the addition of Ca showed a much less pronounced effect. In the cyclic test at 900 °C, Ba1Fe2 showed the poorest stability due to a severe sintering. Sr1Fe1 presented the best stability with a syngas yield of 722 mL/g after 10 cycles. The decrease in the activity of Sr1Fe1 was mainly due to the phase separation of SrFeO3-x after multiple cycles. Thermodynamically, Sr1Fe1 is favorable for the production of CO instead of CO2, leading to its intrinsic high selectivity. As demonstrated by 18O-isotopic exchange and H2-TPR, the activity of surface lattice oxygen and the diffusivity of bulk lattice oxygen was boosted by Sr addition, which caused the high ηC and SCO of Sr1Fe1 at the same time. Thus, even at O/C=5, SCO for Sr1Fe1 reached 64 % with ηC up to 99 %, comparing to the SCO=31 % and ηC=91 % for Fe2O3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics Sulfur-vulcanized CoFe2O4 with high-efficiency photo-to-thermal conversion for enhanced CO2 reduction and mechanistic insights into selectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1