The influence of process parameters on the microstructure and properties of the TiC/Ti-alloy composites fabricated by the directed energy deposition process
Yongxia Wang , Wei Fan , Fan Zhou , Konda Gokuldoss Prashanth , Zhe Feng , Siyu Zhang , Hua Tan , Xin Lin
{"title":"The influence of process parameters on the microstructure and properties of the TiC/Ti-alloy composites fabricated by the directed energy deposition process","authors":"Yongxia Wang , Wei Fan , Fan Zhou , Konda Gokuldoss Prashanth , Zhe Feng , Siyu Zhang , Hua Tan , Xin Lin","doi":"10.1016/j.jmrt.2024.12.043","DOIUrl":null,"url":null,"abstract":"<div><div>In titanium matrix composites, the size and distribution of the reinforcing particles significantly impact their mechanical properties. Accordingly, in this work, TiC-reinforced Ti-alloy matrix composites were fabricated using the directed energy deposition (DED) technology. The influence of the varying process parameters on the microstructure and properties of the TiC-reinforcing particles and the α phase in the matrix was elucidated. The results revealed that process parameters had a notable influence on the morphology and distribution of the TiC reinforcing particles as well as the morphology of the α phase. A reduction in the pulse current and increasing scanning speed led to a significant decrease in the size of TiC reinforcing particles but offered uniform distribution. Concurrently, the morphology of the α phase changes from coarse lath-like to slender lath-like to irregular block-like. The combination of the TiC particles and the α phase with distinct characteristics resulted in significant variations in the room-temperature tensile properties of the TiC/Ti-alloy composites. The tensile strength of the TiC/Ti-alloy composites exhibiting optimal performance in this work reached 1412 MPa, which is ∼28% higher than that of the forged Ti-alloy matrix (1100 MPa). This research offers the groundwork for a substantial enhancement in the overall properties of titanium matrix composites.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"34 ","pages":"Pages 164-174"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424028461","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In titanium matrix composites, the size and distribution of the reinforcing particles significantly impact their mechanical properties. Accordingly, in this work, TiC-reinforced Ti-alloy matrix composites were fabricated using the directed energy deposition (DED) technology. The influence of the varying process parameters on the microstructure and properties of the TiC-reinforcing particles and the α phase in the matrix was elucidated. The results revealed that process parameters had a notable influence on the morphology and distribution of the TiC reinforcing particles as well as the morphology of the α phase. A reduction in the pulse current and increasing scanning speed led to a significant decrease in the size of TiC reinforcing particles but offered uniform distribution. Concurrently, the morphology of the α phase changes from coarse lath-like to slender lath-like to irregular block-like. The combination of the TiC particles and the α phase with distinct characteristics resulted in significant variations in the room-temperature tensile properties of the TiC/Ti-alloy composites. The tensile strength of the TiC/Ti-alloy composites exhibiting optimal performance in this work reached 1412 MPa, which is ∼28% higher than that of the forged Ti-alloy matrix (1100 MPa). This research offers the groundwork for a substantial enhancement in the overall properties of titanium matrix composites.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.