A pipeline to enhance animal vehicle collision analysis in crash report dataset

IF 3.9 2区 工程技术 Q1 ERGONOMICS Journal of Safety Research Pub Date : 2025-02-01 DOI:10.1016/j.jsr.2024.12.002
Boshra Besharatian, Sattar Dorafshan
{"title":"A pipeline to enhance animal vehicle collision analysis in crash report dataset","authors":"Boshra Besharatian,&nbsp;Sattar Dorafshan","doi":"10.1016/j.jsr.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div><em>Introduction</em>: Animal vehicle collisions (AVCs) are a global safety concern, requiring analysis and predictive models for understanding and mitigation. Police crash report data are one of the main sources of AVC data globally. However, they are prone to reporting policy change and other inconsistencies, particularly in rural areas, hindering the development of predictive models. Through development of a robust approach for data cleaning, quality control, feature selection, and contribution level identification, this study proposes a pipeline to address this shortcoming. <em>Method:</em> North Dakota crash data set is used as a case study due to high rates on AVC in this rural region and its diverse wildlife ecosystem. Theil’s U association index, and chi-square tests were implemented in the pipeline to evaluate the proposed pipeline effectiveness. The pipeline detects and removes skewed proportion samples, while addressing data collection inconsistency, low variance, and duplicated features. <em>Results:</em> Pipeline imposed 3.5% sample size and 88.9% feature size reduction on the original crash data over 20 years. Observation on the modified dataset revealed year, day, and driver features had the lowest while hour, county, and speed limit had the highest statistical contribution to the AVC. Light, hour, and month were lumped in daily solar cycle and represented as a single temporal feature that can be used effectively to develop predictive model. Finally, presented pipeline increased spatiotemporal integrity while reducing the runtime by 92.46% for the association analysis.</div></div>","PeriodicalId":48224,"journal":{"name":"Journal of Safety Research","volume":"92 ","pages":"Pages 245-261"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Safety Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002243752400210X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Animal vehicle collisions (AVCs) are a global safety concern, requiring analysis and predictive models for understanding and mitigation. Police crash report data are one of the main sources of AVC data globally. However, they are prone to reporting policy change and other inconsistencies, particularly in rural areas, hindering the development of predictive models. Through development of a robust approach for data cleaning, quality control, feature selection, and contribution level identification, this study proposes a pipeline to address this shortcoming. Method: North Dakota crash data set is used as a case study due to high rates on AVC in this rural region and its diverse wildlife ecosystem. Theil’s U association index, and chi-square tests were implemented in the pipeline to evaluate the proposed pipeline effectiveness. The pipeline detects and removes skewed proportion samples, while addressing data collection inconsistency, low variance, and duplicated features. Results: Pipeline imposed 3.5% sample size and 88.9% feature size reduction on the original crash data over 20 years. Observation on the modified dataset revealed year, day, and driver features had the lowest while hour, county, and speed limit had the highest statistical contribution to the AVC. Light, hour, and month were lumped in daily solar cycle and represented as a single temporal feature that can be used effectively to develop predictive model. Finally, presented pipeline increased spatiotemporal integrity while reducing the runtime by 92.46% for the association analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
4.90%
发文量
174
审稿时长
61 days
期刊介绍: Journal of Safety Research is an interdisciplinary publication that provides for the exchange of ideas and scientific evidence capturing studies through research in all areas of safety and health, including traffic, workplace, home, and community. This forum invites research using rigorous methodologies, encourages translational research, and engages the global scientific community through various partnerships (e.g., this outreach includes highlighting some of the latest findings from the U.S. Centers for Disease Control and Prevention).
期刊最新文献
A pipeline to enhance animal vehicle collision analysis in crash report dataset Caregiver beliefs about older adult falls from a nationally representative U.S. sample 2022 Examining the influence of national culture on aviation safety: A systematic review Effectiveness of training in reducing accidents in construction companies E-scooter safety under scrutiny: Examining crash patterns and injuries in the UK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1