Evaluating the utilization of municipal solid waste incineration ash in enhancing ceramsite aerated concrete blocks

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY alexandria engineering journal Pub Date : 2025-02-01 DOI:10.1016/j.aej.2024.11.107
Yuping Wu , Yanhong Wang , Wensong Han , Yonghe Yao
{"title":"Evaluating the utilization of municipal solid waste incineration ash in enhancing ceramsite aerated concrete blocks","authors":"Yuping Wu ,&nbsp;Yanhong Wang ,&nbsp;Wensong Han ,&nbsp;Yonghe Yao","doi":"10.1016/j.aej.2024.11.107","DOIUrl":null,"url":null,"abstract":"<div><div>In an effort to forge a new pathway for the resourceful utilization of municipal solid waste (MSW) incineration ash, thereby transforming waste into treasure and detriment into benefit, this study investigates the impact of incineration ash on the fundamental properties of expanded clay aggregate aerated concrete blocks. Granular ash and powdered ash were separated from MSW incineration ash. These were then used as replacements for pottery sand and fly ash, respectively, in the production of ceramsite aerated concrete blocks. Replacement ratios were set at 0 %, 10 %, 20 %, 30 %, 40 %, and 50 % of the dry mass proportion. An experimental study was conducted on the product performance indicators of grade CA50.B07 ceramsite aerated concrete blocks at 28 days, including dry density, compressive strength, and thermal conductivity. Furthermore, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were employed to analyze the micro-material composition and pore structure. The results show that when the replacement rate of granular ash to sand is 20 %, and the replacement rate of powdered ash to fly ash is 10 %, the produced aerated concrete blocks exhibit optimal technical performance while meeting product quality standards. This successfully demonstrates the resource utilization potential of municipal solid waste incineration residues.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"114 ","pages":"Pages 292-299"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824015783","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In an effort to forge a new pathway for the resourceful utilization of municipal solid waste (MSW) incineration ash, thereby transforming waste into treasure and detriment into benefit, this study investigates the impact of incineration ash on the fundamental properties of expanded clay aggregate aerated concrete blocks. Granular ash and powdered ash were separated from MSW incineration ash. These were then used as replacements for pottery sand and fly ash, respectively, in the production of ceramsite aerated concrete blocks. Replacement ratios were set at 0 %, 10 %, 20 %, 30 %, 40 %, and 50 % of the dry mass proportion. An experimental study was conducted on the product performance indicators of grade CA50.B07 ceramsite aerated concrete blocks at 28 days, including dry density, compressive strength, and thermal conductivity. Furthermore, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were employed to analyze the micro-material composition and pore structure. The results show that when the replacement rate of granular ash to sand is 20 %, and the replacement rate of powdered ash to fly ash is 10 %, the produced aerated concrete blocks exhibit optimal technical performance while meeting product quality standards. This successfully demonstrates the resource utilization potential of municipal solid waste incineration residues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
期刊最新文献
An adaptive frame and intelligent control approach for an autonomous hybrid renewable energy technology consisting of PV, wind, and fuel cell innovation Evaluating the utilization of municipal solid waste incineration ash in enhancing ceramsite aerated concrete blocks Grooved single-channel dual media tank thermal energy storage systems to improve overall thermal performance: Numerical analysis Interrelated dynamic biased feature selection and classification model using enhanced gorilla troops optimizer for intrusion detection On mathematical analysis of a micro-scale Boltzmann-Maxwell’s PDEs model for a plasma flow influence by non-linear sinusoidal external electric field: Novel irreversibility analysis of plasma kinetic theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1