{"title":"Synthesis and characterization of graphitic carbon Nitride/Cd2SnO4 nanostructures for high-performance flexible supercapacitors","authors":"Waris , Sayfa Bano , Moha Suhail Chaudhary , Saima Sultana , Mahendra Yadav , Mohammad Zain Khan","doi":"10.1016/j.solidstatesciences.2024.107817","DOIUrl":null,"url":null,"abstract":"<div><div>The development of electrode materials based on heterojunctions shows a promising approach for enhancing electrochemical performance, offering the potential for future advancements in energy storage applications. This investigation, a graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) matrix functioned as a supportive network, regulating the aggregation of cadmium stannate (Cd<sub>2</sub>SnO<sub>4</sub>) nanoparticles (NPs) thereby giving promising stability during electrochemical cycling. The optimized g-C<sub>3</sub>N<sub>4</sub>/Cd<sub>2</sub>SnO<sub>4</sub> composite demonstrated excellent electrochemical performance, characterized by a high specific capacitance and improved cycling stability. X-ray diffraction (XRD) patterns of the composite revealed distinct crystalline phases of individual components, confirming the orthorhombic structure of the composite. The electrochemical charge storage performance of the synthesized electrode material has been evaluated in an aqueous acidic and gel-electrolyte (PVA/H<sub>2</sub>SO<sub>4</sub>) medium. The results indicate that among the prepared electrode materials, the g-C<sub>3</sub>N<sub>4</sub>/Cd<sub>2</sub>SnO<sub>4</sub> sample exhibits the highest electrochemical capacitance of 601.20 Fg<sup>-1</sup> at 0.5 Ag<sup>-1</sup>. Even after 5000 charge-discharge cycles, the electrode maintained its cycling stability with 94.69 % capacitance retention. The performance of the g-C₃N₄/Cd<sub>2</sub>SnO<sub>4</sub> electrode was further evaluated in a gel polymer electrolyte by assembling a symmetric capacitor for real-world application using a two-electrode system. The use of a gel electrolyte allowed the device to achieve an energy density of 48.81 Wh kg⁻<sup>1</sup> and a power density of 250 W kg⁻<sup>1</sup> within a voltage window of 1.0 V at an operating current density of 0.5 A g⁻<sup>1</sup>. Notably, the g-C₃N₄/Cd<sub>2</sub>SnO<sub>4</sub> electrode demonstrated strong cycling stability in the gel electrolyte, maintaining performance for up to 5000 cycles. Furthermore, the symmetric device in the gel electrolyte exhibited excellent electrochemical stability across various bending angles, highlighting its potential for use as a flexible electrode in supercapacitors.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"160 ","pages":"Article 107817"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824003820","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The development of electrode materials based on heterojunctions shows a promising approach for enhancing electrochemical performance, offering the potential for future advancements in energy storage applications. This investigation, a graphitic carbon nitride (g-C3N4) matrix functioned as a supportive network, regulating the aggregation of cadmium stannate (Cd2SnO4) nanoparticles (NPs) thereby giving promising stability during electrochemical cycling. The optimized g-C3N4/Cd2SnO4 composite demonstrated excellent electrochemical performance, characterized by a high specific capacitance and improved cycling stability. X-ray diffraction (XRD) patterns of the composite revealed distinct crystalline phases of individual components, confirming the orthorhombic structure of the composite. The electrochemical charge storage performance of the synthesized electrode material has been evaluated in an aqueous acidic and gel-electrolyte (PVA/H2SO4) medium. The results indicate that among the prepared electrode materials, the g-C3N4/Cd2SnO4 sample exhibits the highest electrochemical capacitance of 601.20 Fg-1 at 0.5 Ag-1. Even after 5000 charge-discharge cycles, the electrode maintained its cycling stability with 94.69 % capacitance retention. The performance of the g-C₃N₄/Cd2SnO4 electrode was further evaluated in a gel polymer electrolyte by assembling a symmetric capacitor for real-world application using a two-electrode system. The use of a gel electrolyte allowed the device to achieve an energy density of 48.81 Wh kg⁻1 and a power density of 250 W kg⁻1 within a voltage window of 1.0 V at an operating current density of 0.5 A g⁻1. Notably, the g-C₃N₄/Cd2SnO4 electrode demonstrated strong cycling stability in the gel electrolyte, maintaining performance for up to 5000 cycles. Furthermore, the symmetric device in the gel electrolyte exhibited excellent electrochemical stability across various bending angles, highlighting its potential for use as a flexible electrode in supercapacitors.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.