Harmonizing epidemic dynamics: A fractional calculus approach to optimal control strategies for cholera transmission

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES Scientific African Pub Date : 2025-01-16 DOI:10.1016/j.sciaf.2025.e02545
Sunday Oluwafemi Gbodogbe
{"title":"Harmonizing epidemic dynamics: A fractional calculus approach to optimal control strategies for cholera transmission","authors":"Sunday Oluwafemi Gbodogbe","doi":"10.1016/j.sciaf.2025.e02545","DOIUrl":null,"url":null,"abstract":"<div><div>Cholera remains a persistent global health challenge, demanding innovative approaches for effective control and mitigation. In this groundbreaking study, I delve into the intricate interplay between mathematical modeling, fractional calculus theory, and optimal control strategies to elucidate the dynamics of cholera transmission and propose evidence-based interventions. My investigation begins by establishing foundational principles of fractional calculus theory, providing a robust framework for analyzing infectious disease dynamics. Through a comprehensive epidemiological model, I delineate the transmission dynamics of cholera, stratifying populations into susceptible, infected, and recovered cohorts. I integrate parameters such as contact rates, mortality rates, and re-susceptibility rates to capture the complexity of cholera dynamics within human and vector populations. Central to my analysis are the derived Caputo fractional differential equations, which elegantly capture the fractional fluctuations inherent in disease propagation. Leveraging mathematical analysis, I demonstrate the positivity and boundedness of solutions, establishing non-negative invariants crucial for understanding disease dynamics. Furthermore, I explore optimal control strategies aimed at mitigating cholera transmission. By introducing vaccination campaigns and prompt treatment modalities, I elucidate their profound impact on susceptible, infected, and recovered populations. My findings underscore the transformative potential of targeted interventions, despite initial observations of counterintuitive trends, such as increases in susceptible populations with intensified control efforts. Through numerical simulations, I provide visual representations of cholera dynamics, offering insights into the temporal evolution of the disease and the effectiveness of control measures. My results demonstrate the efficacy of vaccination campaigns and prompt treatment strategies in curbing cholera incidence, paving the way for evidence-based interventions. In conclusion, my study offers a paradigm shift in understanding and controlling cholera transmission. By integrating mathematical modeling, fractional calculus theory, and optimal control strategies, I provide a comprehensive framework for tackling infectious diseases. This groundbreaking approach holds promise for informing public health policies and mitigating the global burden of cholera and beyond.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"27 ","pages":"Article e02545"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246822762500016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cholera remains a persistent global health challenge, demanding innovative approaches for effective control and mitigation. In this groundbreaking study, I delve into the intricate interplay between mathematical modeling, fractional calculus theory, and optimal control strategies to elucidate the dynamics of cholera transmission and propose evidence-based interventions. My investigation begins by establishing foundational principles of fractional calculus theory, providing a robust framework for analyzing infectious disease dynamics. Through a comprehensive epidemiological model, I delineate the transmission dynamics of cholera, stratifying populations into susceptible, infected, and recovered cohorts. I integrate parameters such as contact rates, mortality rates, and re-susceptibility rates to capture the complexity of cholera dynamics within human and vector populations. Central to my analysis are the derived Caputo fractional differential equations, which elegantly capture the fractional fluctuations inherent in disease propagation. Leveraging mathematical analysis, I demonstrate the positivity and boundedness of solutions, establishing non-negative invariants crucial for understanding disease dynamics. Furthermore, I explore optimal control strategies aimed at mitigating cholera transmission. By introducing vaccination campaigns and prompt treatment modalities, I elucidate their profound impact on susceptible, infected, and recovered populations. My findings underscore the transformative potential of targeted interventions, despite initial observations of counterintuitive trends, such as increases in susceptible populations with intensified control efforts. Through numerical simulations, I provide visual representations of cholera dynamics, offering insights into the temporal evolution of the disease and the effectiveness of control measures. My results demonstrate the efficacy of vaccination campaigns and prompt treatment strategies in curbing cholera incidence, paving the way for evidence-based interventions. In conclusion, my study offers a paradigm shift in understanding and controlling cholera transmission. By integrating mathematical modeling, fractional calculus theory, and optimal control strategies, I provide a comprehensive framework for tackling infectious diseases. This groundbreaking approach holds promise for informing public health policies and mitigating the global burden of cholera and beyond.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
期刊最新文献
Allometric models for estimating aboveground biomass and carbon stocks of the semi-arid savanna woody species, Detarium microcarpum Guill. et Perr. Spatial epidemiology based on the analysis of COVID-19 in Africa Time-periodic dynamics in COVID-19 transmission considering the impact of population disbelief and fear Natural pozzolan as a sustainable cement replacement in high-performance concrete: Effects on mechanical properties, durability, and microstructural development Design and simulation of a 5 KW solar-powered hybrid electric vehicle charging station with a ANN–Kalman filter MPPT and MPC-based inverter control for reduced THD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1