{"title":"Sustainable thermoelectric materials for solar energy applications: A review","authors":"Neelam Baghel , Anil Kumar","doi":"10.1016/j.solidstatesciences.2024.107784","DOIUrl":null,"url":null,"abstract":"<div><div>The growth and implementation of sustainable thermoelectric materials for solar energy applications are investigated in this review article. Subsequently, thermoelectric materials provide a viable means of directly transforming solar heat into electricity, they are essential to improving the sustainability and efficiency of solar energy systems. This paper examines the principles of thermoelectricity, significant material properties, and the most recent developments in thermoelectric materials, such as lead telluride, bismuth telluride, organic, hybrid, and earth-abundant inorganic compounds. Special attention is given to material performance, environmental impact, scalability, and its integration into solar energy systems. Additionally, issues including stability, low efficiency, and a balance between performance and material sustainability are explored. The assessment concludes by outlining potential research approaches and technological advances that will be required to turn thermoelectric materials into an achievable and future solution to the world's energy problems.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"160 ","pages":"Article 107784"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824003492","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The growth and implementation of sustainable thermoelectric materials for solar energy applications are investigated in this review article. Subsequently, thermoelectric materials provide a viable means of directly transforming solar heat into electricity, they are essential to improving the sustainability and efficiency of solar energy systems. This paper examines the principles of thermoelectricity, significant material properties, and the most recent developments in thermoelectric materials, such as lead telluride, bismuth telluride, organic, hybrid, and earth-abundant inorganic compounds. Special attention is given to material performance, environmental impact, scalability, and its integration into solar energy systems. Additionally, issues including stability, low efficiency, and a balance between performance and material sustainability are explored. The assessment concludes by outlining potential research approaches and technological advances that will be required to turn thermoelectric materials into an achievable and future solution to the world's energy problems.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.