Growth/no-growth boundary of superdormant Clostridium perfringens spores under synergic treatment of heat and hydrostatic pressure: Modeling and evaluation
{"title":"Growth/no-growth boundary of superdormant Clostridium perfringens spores under synergic treatment of heat and hydrostatic pressure: Modeling and evaluation","authors":"Ziyue Chai , Fangyun Dong , Siyun Xie , Yilin Lin , Yigang Yu , Caihu Liao","doi":"10.1016/j.ifset.2025.103936","DOIUrl":null,"url":null,"abstract":"<div><div><em>Clostridium perfringens</em> spores exhibit substantial resistance to conventional sterilization methods, posing a significant food safety challenge due to potential toxin production. Although heat and hydrostatic pressure treatments can effectively inactivate most spores, superdormant (SD) spores often persist. This study investigated the effects of common additives, including sodium chloride (NaCl, 0–4 %), acetic acid (CH₃COOH, 0–0.16 %), and allyl isothiocyanate (AITC, 0–0.04 %) on the germination and outgrowth of SD spores, using dormant (D) spores as a control. Logistic regression was used to develop growth/no-growth boundary models for both spore types. The results demonstrated that increasing NaCl, CH₃COOH, and AITC concentrations significantly inhibited the growth of both D and SD spores (<em>p</em> < 0.05). Notably, SD spores exhibited heightened sensitivity and were inhibited at lower concentrations than D spores. The antimicrobial effects of NaCl, CH₃COOH, and AITC on spore growth in chicken meat were experimentally validated and compared with model predictions. While minor discrepancies were observed due to variations in the growth medium, the experimental results generally agreed strongly with the model's predictions. These growth/no-growth boundary models quantitatively assess the inhibitory effects of NaCl, CH₃COOH, and AITC on SD spores under synergic treatment of heat and hydrostatic pressure, providing a critical foundation for optimizing antimicrobial strategies to improve food safety in cooked meat products.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"100 ","pages":"Article 103936"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856425000207","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clostridium perfringens spores exhibit substantial resistance to conventional sterilization methods, posing a significant food safety challenge due to potential toxin production. Although heat and hydrostatic pressure treatments can effectively inactivate most spores, superdormant (SD) spores often persist. This study investigated the effects of common additives, including sodium chloride (NaCl, 0–4 %), acetic acid (CH₃COOH, 0–0.16 %), and allyl isothiocyanate (AITC, 0–0.04 %) on the germination and outgrowth of SD spores, using dormant (D) spores as a control. Logistic regression was used to develop growth/no-growth boundary models for both spore types. The results demonstrated that increasing NaCl, CH₃COOH, and AITC concentrations significantly inhibited the growth of both D and SD spores (p < 0.05). Notably, SD spores exhibited heightened sensitivity and were inhibited at lower concentrations than D spores. The antimicrobial effects of NaCl, CH₃COOH, and AITC on spore growth in chicken meat were experimentally validated and compared with model predictions. While minor discrepancies were observed due to variations in the growth medium, the experimental results generally agreed strongly with the model's predictions. These growth/no-growth boundary models quantitatively assess the inhibitory effects of NaCl, CH₃COOH, and AITC on SD spores under synergic treatment of heat and hydrostatic pressure, providing a critical foundation for optimizing antimicrobial strategies to improve food safety in cooked meat products.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.