Cu(II) supported on crosslinked chitosan-cellulose beads as efficient and recyclable catalysts for oxidative self-coupling of amines to imines

Waranya Limprasart , Jariyaporn Sangkaworn , Sirichok Paosopa , Soraya Pornsuwan , Thanthapatra Bunchuay , Jonggol Tantirungrotechai
{"title":"Cu(II) supported on crosslinked chitosan-cellulose beads as efficient and recyclable catalysts for oxidative self-coupling of amines to imines","authors":"Waranya Limprasart ,&nbsp;Jariyaporn Sangkaworn ,&nbsp;Sirichok Paosopa ,&nbsp;Soraya Pornsuwan ,&nbsp;Thanthapatra Bunchuay ,&nbsp;Jonggol Tantirungrotechai","doi":"10.1016/j.carpta.2024.100660","DOIUrl":null,"url":null,"abstract":"<div><div>To address environmental and sustainability goals, catalytic processes must be efficient, economical, and practical. Chitosan-supported metal catalysts face challenges in mechanical strength and chemical stability, which can be improved by crosslinking and blending with cellulose. This study developed Cu(II) supported crosslinked chitosan-cellulose beads as a cost-effective and sustainable catalyst for green synthesis of imines, focusing on mechanical robustness to extend catalyst lifetime. The catalyst beads were prepared by mixing medium molecular weight chitosan and microcrystalline cellulose in HCl solution (2:1 w/w), crosslinking with 0.17 wt.% glyoxal, and depositing copper using 30 mM Cu(OAc)<sub>2</sub> solution. The interactions between Cu(II) ions and the crosslinked chitosan-cellulose matrix were investigated. The Cu(II) species formed a stable square planar geometry, coordinating with oxygen and nitrogen donor atoms in the crosslinked matrix. The resulting structure combined the strength of cellulose with the chemical stability provided by glyoxal crosslinking, outperforming pure chitosan in mechanical strength and stability. The Cu/chitosan-cellulose beads catalyzed the oxidative self-coupling of amines to imines (14 examples), achieving yields of 45–97 % and retaining activity over 13 cycles with simple separation and recycling. Therefore, this Cu-based catalyst, with its robust structure and bead form, is a promising option for sustainable and efficient synthesis of imines.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100660"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924002408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

To address environmental and sustainability goals, catalytic processes must be efficient, economical, and practical. Chitosan-supported metal catalysts face challenges in mechanical strength and chemical stability, which can be improved by crosslinking and blending with cellulose. This study developed Cu(II) supported crosslinked chitosan-cellulose beads as a cost-effective and sustainable catalyst for green synthesis of imines, focusing on mechanical robustness to extend catalyst lifetime. The catalyst beads were prepared by mixing medium molecular weight chitosan and microcrystalline cellulose in HCl solution (2:1 w/w), crosslinking with 0.17 wt.% glyoxal, and depositing copper using 30 mM Cu(OAc)2 solution. The interactions between Cu(II) ions and the crosslinked chitosan-cellulose matrix were investigated. The Cu(II) species formed a stable square planar geometry, coordinating with oxygen and nitrogen donor atoms in the crosslinked matrix. The resulting structure combined the strength of cellulose with the chemical stability provided by glyoxal crosslinking, outperforming pure chitosan in mechanical strength and stability. The Cu/chitosan-cellulose beads catalyzed the oxidative self-coupling of amines to imines (14 examples), achieving yields of 45–97 % and retaining activity over 13 cycles with simple separation and recycling. Therefore, this Cu-based catalyst, with its robust structure and bead form, is a promising option for sustainable and efficient synthesis of imines.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Amine modified sodium alginate: Synthesis, characterization and in vivo evaluation in rainbow trout (Oncorhynchus mykiss) Conductive supramolecular acrylate hydrogels enabled by quaternized chitosan ionic crosslinking for high-fidelity 3D printing Dual targeting of breast cancer by chitosan/poly lactic-co-glycolic acid nanodelivery systems: Surface activation with folic acid/aptamers, and co-encapsulated with Sorafenib and quercetin Incorporating insulin into alginate-chitosan 3D-printed scaffolds: A comprehensive study on structure, mechanics, and biocompatibility for cartilage tissue engineering Sustainable biopolymer-based spheres for controlled release of nematodes: From development to their effects under seasonal climate variations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1