{"title":"4D shape morphing in 3D-printed pea protein structures through designed surface grooves under drying and frying conditions","authors":"Sushil Koirala , Sangeeta Prakash , Azharul Karim , Bhesh Bhandari","doi":"10.1016/j.ifset.2025.103924","DOIUrl":null,"url":null,"abstract":"<div><div>Shape morphing, a deformable property of food, can be controlled and programmable, which allows the creation of uniquely designed foods to achieve desired properties. In this context, the present study investigated the four-dimensional (4D) shape morphing behaviour of 3D-printed pea protein structures, focusing on the influence of groove depth and orientation under drying and frying conditions. A formulation consisting of pea protein isolate (60 g), water (40 g), and xanthan gum (5 g) was found optimal for 3D printing, as it provided the necessary rheological properties for consistent extrusion. Drying experiments at 45 °C, 55 °C, and 65 °C revealed that deeper grooves (3 mm) accelerated drying rates and enhanced controlled shape morphing. At 65 °C, grooved samples exhibited significant morphing, with a maximum bending angle of 183 ± 3.14° and curvature of 0.187 ± 0.03 μ mm<sup>−1</sup>. The orientation of grooves further influenced morphing, with a 45° groove direction producing the most significant controlled twisting, reaching a twisting angle of 320 ± 3.56° and a curvature of 0.215 ± 0.09 μ mm<sup>−1</sup>. Porosity analysis showed increased pore formation at higher temperatures, particularly in grooved samples, with porosity reaching 0.62 ± 0.05 for 3 mm grooves at 65 °C. Nuclear Magnetic Resonance (NMR) analysis revealed that grooved samples had slightly faster structural changes and water loss. SEM images demonstrated distinct surface changes in grooved and dried samples, which helped to explain their morphing behaviour. Thus, this research highlights the possibility of using 3D food printing (3DFP) to precisely design and print programmable groove geometries, activating post-processing 4D shape morphing in food materials.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"100 ","pages":"Article 103924"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856425000086","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Shape morphing, a deformable property of food, can be controlled and programmable, which allows the creation of uniquely designed foods to achieve desired properties. In this context, the present study investigated the four-dimensional (4D) shape morphing behaviour of 3D-printed pea protein structures, focusing on the influence of groove depth and orientation under drying and frying conditions. A formulation consisting of pea protein isolate (60 g), water (40 g), and xanthan gum (5 g) was found optimal for 3D printing, as it provided the necessary rheological properties for consistent extrusion. Drying experiments at 45 °C, 55 °C, and 65 °C revealed that deeper grooves (3 mm) accelerated drying rates and enhanced controlled shape morphing. At 65 °C, grooved samples exhibited significant morphing, with a maximum bending angle of 183 ± 3.14° and curvature of 0.187 ± 0.03 μ mm−1. The orientation of grooves further influenced morphing, with a 45° groove direction producing the most significant controlled twisting, reaching a twisting angle of 320 ± 3.56° and a curvature of 0.215 ± 0.09 μ mm−1. Porosity analysis showed increased pore formation at higher temperatures, particularly in grooved samples, with porosity reaching 0.62 ± 0.05 for 3 mm grooves at 65 °C. Nuclear Magnetic Resonance (NMR) analysis revealed that grooved samples had slightly faster structural changes and water loss. SEM images demonstrated distinct surface changes in grooved and dried samples, which helped to explain their morphing behaviour. Thus, this research highlights the possibility of using 3D food printing (3DFP) to precisely design and print programmable groove geometries, activating post-processing 4D shape morphing in food materials.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.