Characterization of a small non-coding RNA S612 in Bacillus subtilis

Anqi Peng , Weijiao Zhang , Haibo Xiong , Luyao Zhang , Jian Cheng , Yang Wang , Zhen Kang
{"title":"Characterization of a small non-coding RNA S612 in Bacillus subtilis","authors":"Anqi Peng ,&nbsp;Weijiao Zhang ,&nbsp;Haibo Xiong ,&nbsp;Luyao Zhang ,&nbsp;Jian Cheng ,&nbsp;Yang Wang ,&nbsp;Zhen Kang","doi":"10.1016/j.engmic.2024.100186","DOIUrl":null,"url":null,"abstract":"<div><div>Small regulatory RNAs (sRNAs) are non-coding RNA molecules that fine-tune various cellular processes and respond to various environmental stimuli. In <em>Bacillus subtilis</em>, the regulatory mechanisms and specific targets of several sRNAs remain largely unknown. In this study, we identified and characterized S612 as a self-terminating sRNA in <em>B. subtilis</em>. The expression of S612 is regulated by external signals, including nutrient availability and salt concentration. Overexpression of S612 induced filamentous cells with extensive cellular elongation and complete inhibition of sporulation, indicating its potential to control cell morphology and spore formation. S612 directly targets and downregulates genes through post-transcriptional base pairing with mRNAs, including <em>ylmD, trpE, ycxC, yycS, rapH</em>, and <em>amyE</em>, some of which are involved in cell membrane integrity, cell wall synthesis, and sporulation initiation. Therefore, we propose that S612 is an important post-transcriptional regulator of cell morphology and sporulation.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 1","pages":"Article 100186"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370324000481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Small regulatory RNAs (sRNAs) are non-coding RNA molecules that fine-tune various cellular processes and respond to various environmental stimuli. In Bacillus subtilis, the regulatory mechanisms and specific targets of several sRNAs remain largely unknown. In this study, we identified and characterized S612 as a self-terminating sRNA in B. subtilis. The expression of S612 is regulated by external signals, including nutrient availability and salt concentration. Overexpression of S612 induced filamentous cells with extensive cellular elongation and complete inhibition of sporulation, indicating its potential to control cell morphology and spore formation. S612 directly targets and downregulates genes through post-transcriptional base pairing with mRNAs, including ylmD, trpE, ycxC, yycS, rapH, and amyE, some of which are involved in cell membrane integrity, cell wall synthesis, and sporulation initiation. Therefore, we propose that S612 is an important post-transcriptional regulator of cell morphology and sporulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Applications of bacteriophages in precision engineering of the human gut microbiome BTG13-related metalloenzymes: Atypical non-heme iron-dependent dioxygenases with unusual coordination patterns and catalytic mechanisms Complexity of antibiotic resistance and its impact on gut microbiota dynamics Characterization of a small non-coding RNA S612 in Bacillus subtilis Terminal deoxynucleotidyl transferase: Properties and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1