Curcumin-enhanced NIR-II-responsive gold nanobipyramids for targeted HSP 90 inhibition

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2025-02-01 DOI:10.1016/j.mtbio.2025.101541
Zhenying Diao , Youcheng Liang , Yong Liu , Dou Zhang , Long Qiu , Jianbo Sun , Qiaoyou Lu , Yanlei Liu , Daxiang Cui , Ting Yin
{"title":"Curcumin-enhanced NIR-II-responsive gold nanobipyramids for targeted HSP 90 inhibition","authors":"Zhenying Diao ,&nbsp;Youcheng Liang ,&nbsp;Yong Liu ,&nbsp;Dou Zhang ,&nbsp;Long Qiu ,&nbsp;Jianbo Sun ,&nbsp;Qiaoyou Lu ,&nbsp;Yanlei Liu ,&nbsp;Daxiang Cui ,&nbsp;Ting Yin","doi":"10.1016/j.mtbio.2025.101541","DOIUrl":null,"url":null,"abstract":"<div><div>Blockade of heat shock protein 90 (HSP90) expression in multimodal synergistic therapy has a great prospect for cancer treatment. Nanomaterials combined with bioinformatic analysis provides accurate guidance for the design of anti-HSP90 nanomedicines. Herein, a NIR-II-responsive nanoplatform was developed under bioinformatics guided to effectly inhibit HSP90 for enhanced synergistic mild-photothermal chemotherapy without any notable tissue damage. The nanoplatforms were assembled from NIR-II-responsive gold nanobipyramids (GNBs) combined with curcumin (Cur) <em>via</em> hydrophobic-hydrophobic interactions and hydrogen bonds. On the basis of drug discovery and network pharmacology, we found that Cur has impressive anti-HSP90 capability and analyzed its therapeutic mechanism against NSCLC. Under the irradiation of NIR-II light, the obtained GNBs-Cur blocked the expression of HPS90 and inhibited related antiapoptotic pathways, thus enhancing the mild PTT of GNBs under 1064 nm laser irradiation. Meanwhile, Cur served as chemotherapeutic agents to induce apoptosis in tumor cells. In vivo photoacoustic imaging-guided, GNBs-Cur achieved effective tumor elimination through mild-photothermal chemotherapy without systemic toxicity. Overall, this work provides a new therapeutic modality paradigm for potential NSCLC treatment on the basis of synergistic therapies.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"31 ","pages":"Article 101541"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425000997","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Blockade of heat shock protein 90 (HSP90) expression in multimodal synergistic therapy has a great prospect for cancer treatment. Nanomaterials combined with bioinformatic analysis provides accurate guidance for the design of anti-HSP90 nanomedicines. Herein, a NIR-II-responsive nanoplatform was developed under bioinformatics guided to effectly inhibit HSP90 for enhanced synergistic mild-photothermal chemotherapy without any notable tissue damage. The nanoplatforms were assembled from NIR-II-responsive gold nanobipyramids (GNBs) combined with curcumin (Cur) via hydrophobic-hydrophobic interactions and hydrogen bonds. On the basis of drug discovery and network pharmacology, we found that Cur has impressive anti-HSP90 capability and analyzed its therapeutic mechanism against NSCLC. Under the irradiation of NIR-II light, the obtained GNBs-Cur blocked the expression of HPS90 and inhibited related antiapoptotic pathways, thus enhancing the mild PTT of GNBs under 1064 nm laser irradiation. Meanwhile, Cur served as chemotherapeutic agents to induce apoptosis in tumor cells. In vivo photoacoustic imaging-guided, GNBs-Cur achieved effective tumor elimination through mild-photothermal chemotherapy without systemic toxicity. Overall, this work provides a new therapeutic modality paradigm for potential NSCLC treatment on the basis of synergistic therapies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
The anti-depression effect and mechanism of harmonious rosemary essential oil and its application in microcapsules Designing hydrogel for application in spinal surgery Curcumin-enhanced NIR-II-responsive gold nanobipyramids for targeted HSP 90 inhibition Multi-active phlorotannins boost antimicrobial peptide LL-37 to promote periodontal tissue regeneration in diabetic periodontitis Physically engineered extracellular vesicles targeted delivering miR-21-5p to promote renoprotection after renal ischemia-reperfusion injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1