Legionella pneumophila response to shifts in biofilm structure mediated by hydrodynamics

IF 5.9 Q1 MICROBIOLOGY Biofilm Pub Date : 2025-01-24 DOI:10.1016/j.bioflm.2025.100258
Ana Rosa Silva , C. William Keevil , Ana Pereira
{"title":"Legionella pneumophila response to shifts in biofilm structure mediated by hydrodynamics","authors":"Ana Rosa Silva ,&nbsp;C. William Keevil ,&nbsp;Ana Pereira","doi":"10.1016/j.bioflm.2025.100258","DOIUrl":null,"url":null,"abstract":"<div><div>Preventing legionellosis in water systems demands effective hydrodynamic management and biofilm mitigation. This study investigates the complex relationship between hydrodynamics (80 RPM and stagnation), biofilm mesoscale structure and <em>Legionella pneumophila</em> colonization, by addressing three key questions: (1) How do low flow <em>vs</em> stagnation conditions affect biofilm response to <em>L. pneumophila</em> colonization?, (2) How do biofilm structural variations mediate <em>L. pneumophila</em> migration across the biofilm?, and (3) Can specific hydrodynamic conditions trigger <em>L. pneumophila</em> entrance in a viable but nonculturable (VBNC) state? It was found that <em>Pseudomonas fluorescens</em> biofilms exhibit different responses to <em>L. pneumophila</em> based on the prevailing hydrodynamic conditions. While biofilm thickness and porosity decreased under shear (80 RPM), thickness tends to significantly increase when pre-established 80 RPM-grown biofilms are set to stagnation upon <em>L. pneumophila</em> spiking. Imposing stagnation after the spiking also seemed to accelerate <em>Legionella</em> migration towards the bottom of the biofilm. Water structures in the biofilm seem to be key to <em>Legionella</em> migration across the biofilm. Finally, shear conditions favoured the transition of <em>L. pneumophila</em> to VBNC states (∼94 %), despite the high viable cell counts (∼8 log<sub>10</sub> CFU/cm<sup>2</sup>) found throughout the experiments. This research highlights the increased risk posed by biofilms and stagnation, emphasizing the importance of understanding the mechanisms that govern <em>Legionella</em> behaviour in diverse biofilm environments. These insights are crucial for developing more effective monitoring and prevention strategies in water systems.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100258"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590207525000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Preventing legionellosis in water systems demands effective hydrodynamic management and biofilm mitigation. This study investigates the complex relationship between hydrodynamics (80 RPM and stagnation), biofilm mesoscale structure and Legionella pneumophila colonization, by addressing three key questions: (1) How do low flow vs stagnation conditions affect biofilm response to L. pneumophila colonization?, (2) How do biofilm structural variations mediate L. pneumophila migration across the biofilm?, and (3) Can specific hydrodynamic conditions trigger L. pneumophila entrance in a viable but nonculturable (VBNC) state? It was found that Pseudomonas fluorescens biofilms exhibit different responses to L. pneumophila based on the prevailing hydrodynamic conditions. While biofilm thickness and porosity decreased under shear (80 RPM), thickness tends to significantly increase when pre-established 80 RPM-grown biofilms are set to stagnation upon L. pneumophila spiking. Imposing stagnation after the spiking also seemed to accelerate Legionella migration towards the bottom of the biofilm. Water structures in the biofilm seem to be key to Legionella migration across the biofilm. Finally, shear conditions favoured the transition of L. pneumophila to VBNC states (∼94 %), despite the high viable cell counts (∼8 log10 CFU/cm2) found throughout the experiments. This research highlights the increased risk posed by biofilms and stagnation, emphasizing the importance of understanding the mechanisms that govern Legionella behaviour in diverse biofilm environments. These insights are crucial for developing more effective monitoring and prevention strategies in water systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofilm
Biofilm MICROBIOLOGY-
CiteScore
7.50
自引率
1.50%
发文量
30
审稿时长
57 days
期刊介绍:
期刊最新文献
A comprehensive analysis of the effect of quorum-sensing molecule 3-oxo-C12-homoserine lactone on Candida auris and Candida albicans Co-culture biofilm patterns among different Pseudomonas aeruginosa clones from cystic fibrosis patients Legionella pneumophila response to shifts in biofilm structure mediated by hydrodynamics Integration of BrfS into the biofilm-controlling cascade promotes sessile Salmonella growth at low temperatures Development of a tri-species wound model for studying fungal-bacterial interactions and antimicrobial therapies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1