Leveraging microchannel cross-sectional geometry for acoustophoretic manipulation of submicron particles

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Ultrasonics Pub Date : 2025-01-15 DOI:10.1016/j.ultras.2025.107570
Thilhara Tennakoon , Tsz Wai Lai , Ka Chung Chan , Chun-Ho Liu , Randolph Chi Kin Leung , Christopher Yu Hang Chao , Sau Chung Fu
{"title":"Leveraging microchannel cross-sectional geometry for acoustophoretic manipulation of submicron particles","authors":"Thilhara Tennakoon ,&nbsp;Tsz Wai Lai ,&nbsp;Ka Chung Chan ,&nbsp;Chun-Ho Liu ,&nbsp;Randolph Chi Kin Leung ,&nbsp;Christopher Yu Hang Chao ,&nbsp;Sau Chung Fu","doi":"10.1016/j.ultras.2025.107570","DOIUrl":null,"url":null,"abstract":"<div><div>SAW (surface acoustic wave)-based microfluidics is fast becoming a recognised method for isolating and concentrating particles given its capacity for safe and label-free particle manipulation. However, widespread adoption of acoustofluidics for clinical and industrial applications is hindered by its limited capability handling submicron particles. Smaller particles, which are primarily influenced by the acoustic streaming effect, can be captured and enriched by streaming-induced vortices. This study investigated the role of microchannel cross-sectional geometry on the streaming patterns in an acoustically actuated volume and the behaviour of particles in it, in an effort to address the size limitation. Different regimes of particle trapping behaviour were observed and identified, and its dynamics explained using the competing outward centrifugal and inward inertial lift forces. These observations led to a proposed model of particle behavior in a vortex. The study found sloped sidewalls intensify streaming flows and concentration effect. Additionally, the individual vortices were observed becoming more/less affinitive to particles of a certain size, i.e. particles of different sizes were observed settling in distinct streaming vortices. This type of enhanced size-selective capturing behaviour can enable enrichment and binary separation of submicron particle mixtures, with a greater yield and purity than conventional rectangular microchannels.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"149 ","pages":"Article 107570"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000071","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

SAW (surface acoustic wave)-based microfluidics is fast becoming a recognised method for isolating and concentrating particles given its capacity for safe and label-free particle manipulation. However, widespread adoption of acoustofluidics for clinical and industrial applications is hindered by its limited capability handling submicron particles. Smaller particles, which are primarily influenced by the acoustic streaming effect, can be captured and enriched by streaming-induced vortices. This study investigated the role of microchannel cross-sectional geometry on the streaming patterns in an acoustically actuated volume and the behaviour of particles in it, in an effort to address the size limitation. Different regimes of particle trapping behaviour were observed and identified, and its dynamics explained using the competing outward centrifugal and inward inertial lift forces. These observations led to a proposed model of particle behavior in a vortex. The study found sloped sidewalls intensify streaming flows and concentration effect. Additionally, the individual vortices were observed becoming more/less affinitive to particles of a certain size, i.e. particles of different sizes were observed settling in distinct streaming vortices. This type of enhanced size-selective capturing behaviour can enable enrichment and binary separation of submicron particle mixtures, with a greater yield and purity than conventional rectangular microchannels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
期刊最新文献
Selective focusing through target identification and experimental acoustic signature extraction: Through-aberration experiments Efficient conversion of waterborne acoustic waves into electrical energy by using the phase-reversal Fresnel zone plate Low-intensity pulsed ultrasound relieved the diabetic peripheral neuropathy in mice via anti-oxidative stress mechanism Spectral analysis of photoacoustic ultrasound generation in metal-polymer layered structures using a semi-analytical approach Quantitative analysis of variation in photoacoustic guided wave characteristics with bone optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1