{"title":"A generalized method for C3 continuous toolpath planning and its application in robot machining","authors":"Guangxi Li , Haitao Liu , Qi Liu","doi":"10.1016/j.mechmachtheory.2024.105911","DOIUrl":null,"url":null,"abstract":"<div><div>High-order parametric continuity in toolpath generation and smooth passage through singular regions are paramount in five-axis machining. This paper introduces a generalized method for toolpath planning of a 5-DOF machining robot, which encompasses a two-pronged strategy: a toolpath smoothing technique and a singularity avoidance strategy. Initially, the control points of smoothing B-splines are analytically derived using curvature derivative continuity criteria for both linear and arc path segments. On this basis, an effective corner smoothing method, which is capable of addressing the line-line, line-arc, and arc-arc pairs, is developed for the tool position path, and a specialized approach similar to spatial arc-arc pair smoothing is employed for the tool orientation path. Subsequently, an analytical parameter synchronization technique is applied to generate a C<sup>3</sup> continuous toolpath. A real-time singularity avoidance strategy is then proposed to improve the toolpath continuity near the singular configuration of the machining equipment. The effectiveness of the proposed method is verified through simulations and experiments on a robot machining platform, with the integration of a jerk-continuous feedrate profile. The findings indicate that the equipment can operate effectively throughout its entire workspace thanks to the proposed toolpath planning method.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"206 ","pages":"Article 105911"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003380","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-order parametric continuity in toolpath generation and smooth passage through singular regions are paramount in five-axis machining. This paper introduces a generalized method for toolpath planning of a 5-DOF machining robot, which encompasses a two-pronged strategy: a toolpath smoothing technique and a singularity avoidance strategy. Initially, the control points of smoothing B-splines are analytically derived using curvature derivative continuity criteria for both linear and arc path segments. On this basis, an effective corner smoothing method, which is capable of addressing the line-line, line-arc, and arc-arc pairs, is developed for the tool position path, and a specialized approach similar to spatial arc-arc pair smoothing is employed for the tool orientation path. Subsequently, an analytical parameter synchronization technique is applied to generate a C3 continuous toolpath. A real-time singularity avoidance strategy is then proposed to improve the toolpath continuity near the singular configuration of the machining equipment. The effectiveness of the proposed method is verified through simulations and experiments on a robot machining platform, with the integration of a jerk-continuous feedrate profile. The findings indicate that the equipment can operate effectively throughout its entire workspace thanks to the proposed toolpath planning method.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry