Francisco M.T. Pereira Filho , Lucas H.G. de Medeiros , Lorena M. Alexandre e Silva , Kirley M. Canuto , Filipe X. Feitosa , Hosiberto B. de Sant’Ana
{"title":"Density for M−2−HEAA + 2-HEAA and HEAPe + 2-HEAA binary mixtures and pure compounds at high pressure","authors":"Francisco M.T. Pereira Filho , Lucas H.G. de Medeiros , Lorena M. Alexandre e Silva , Kirley M. Canuto , Filipe X. Feitosa , Hosiberto B. de Sant’Ana","doi":"10.1016/j.jct.2024.107429","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the effects of cations and anions on the density of pure compounds N-methyl-2-hydroxyethylammonium acetate [m-2-HEAA], 2-hydroxyethylammonium acetate [2-HEAA], and 2-hydroxyethylammonium pentanoate [HEAPe], as well as their mixtures following mixtures [m-2-HEAA] + [2-HEAA] and [HEAPe] + [2-HEAA], were determined. These measurements were conducted at pressures up to 100.0 MPa and within a temperature range of T = (298.15 to 373.15) K using the vibrating tube method. A Tammann-Tait equation correlated the experimental density data with an average absolute relative deviation (<span><math><mrow><mo>%</mo><mi>A</mi><mi>A</mi><mi>R</mi><mi>D</mi></mrow></math></span>) less than 0.065 %. From this Tammann-Tait equation, the following derivative properties were determined for pure compounds: isothermal compressibility (<span><math><mrow><msub><mi>κ</mi><mi>T</mi></msub></mrow></math></span>), isobaric expansivity (<span><math><mrow><msub><mi>α</mi><mi>p</mi></msub></mrow></math></span>), thermal pressure coefficient (<span><math><mrow><msub><mi>γ</mi><mi>V</mi></msub></mrow></math></span>)<sub>,</sub> and internal pressure (<span><math><mrow><msub><mi>P</mi><mi>i</mi></msub></mrow></math></span>). For the binary mixtures, excess molar volume (<em>V<sup>E</sup></em>) was determined. These data showed that N-methyl-2-hydroxyethylammonium anion impacts more than pentanoate cation when compared to their effect on the ILs packing efficiency. Furthermore, density data was estimated using Paduszynski and Domanska, Lazzus, and Evangelista et al. group contributing methods.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"203 ","pages":"Article 107429"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424001824","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the effects of cations and anions on the density of pure compounds N-methyl-2-hydroxyethylammonium acetate [m-2-HEAA], 2-hydroxyethylammonium acetate [2-HEAA], and 2-hydroxyethylammonium pentanoate [HEAPe], as well as their mixtures following mixtures [m-2-HEAA] + [2-HEAA] and [HEAPe] + [2-HEAA], were determined. These measurements were conducted at pressures up to 100.0 MPa and within a temperature range of T = (298.15 to 373.15) K using the vibrating tube method. A Tammann-Tait equation correlated the experimental density data with an average absolute relative deviation () less than 0.065 %. From this Tammann-Tait equation, the following derivative properties were determined for pure compounds: isothermal compressibility (), isobaric expansivity (), thermal pressure coefficient (), and internal pressure (). For the binary mixtures, excess molar volume (VE) was determined. These data showed that N-methyl-2-hydroxyethylammonium anion impacts more than pentanoate cation when compared to their effect on the ILs packing efficiency. Furthermore, density data was estimated using Paduszynski and Domanska, Lazzus, and Evangelista et al. group contributing methods.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.